Exemplo n.º 1
0
    def simulate(self, Tend, nIntervals, gridWidth):

        problem = Implicit_Problem(self.rhs, self.y0, self.yd0)
        problem.name = 'IDA'
        # solver.rhs = self.right_hand_side
        problem.handle_result = self.handle_result
        problem.state_events = self.state_events
        problem.handle_event = self.handle_event
        problem.time_events = self.time_events
        problem.finalize = self.finalize
        # Create IDA object and set additional parameters
        simulation = IDA(problem)
        simulation.atol = self.atol
        simulation.rtol = self.rtol
        simulation.verbosity = self.verbosity
        if hasattr(simulation, 'continuous_output'):
            simulation.continuous_output = False  # default 0, if one step approach should be used
        elif hasattr(simulation, 'report_continuously'):
            simulation.report_continuously = False  # default 0, if one step approach should be used
        simulation.tout1 = self.tout1
        simulation.lsoff = self.lsoff

        # Calculate nOutputIntervals:
        if gridWidth <> None:
            nOutputIntervals = int((Tend - self.t0) / gridWidth)
        else:
            nOutputIntervals = nIntervals
        # Check for feasible input parameters
        if nOutputIntervals == 0:
            print 'Error: gridWidth too high or nIntervals set to 0! Continue with nIntervals=1'
            nOutputIntervals = 1
        # Perform simulation
        simulation.simulate(Tend, nOutputIntervals)  # to get the values: t_new, y_new,  yd_new = simulation.simulate
Exemplo n.º 2
0
    def simulate(self, Tend, nIntervals, gridWidth):

        problem = Implicit_Problem(self.rhs, self.y0, self.yd0)
        problem.name = 'IDA'
        # solver.rhs = self.right_hand_side
        problem.handle_result = self.handle_result
        problem.state_events = self.state_events
        problem.handle_event = self.handle_event
        problem.time_events = self.time_events
        problem.finalize = self.finalize
        # Create IDA object and set additional parameters
        simulation = IDA(problem)
        simulation.atol = self.atol
        simulation.rtol = self.rtol
        simulation.verbosity = self.verbosity
        if hasattr(simulation, 'continuous_output'):
            simulation.continuous_output = False  # default 0, if one step approach should be used
        elif hasattr(simulation, 'report_continuously'):
            simulation.report_continuously = False  # default 0, if one step approach should be used
        simulation.tout1 = self.tout1
        simulation.lsoff = self.lsoff

        # Calculate nOutputIntervals:
        if gridWidth <> None:
            nOutputIntervals = int((Tend - self.t0) / gridWidth)
        else:
            nOutputIntervals = nIntervals
        # Check for feasible input parameters
        if nOutputIntervals == 0:
            print 'Error: gridWidth too high or nIntervals set to 0! Continue with nIntervals=1'
            nOutputIntervals = 1
        # Perform simulation
        simulation.simulate(Tend, nOutputIntervals)  # to get the values: t_new, y_new,  yd_new = simulation.simulate
Exemplo n.º 3
0
 def solve(self):
     # Setup IDA
     assert self._initial_time is not None
     problem = Implicit_Problem(self._residual_vector_eval,
                                self.solution.vector(),
                                self.solution_dot.vector(),
                                self._initial_time)
     problem.jac = self._jacobian_matrix_eval
     problem.handle_result = self._monitor
     # Define an Assimulo IDA solver
     solver = IDA(problem)
     # Setup options
     assert self._time_step_size is not None
     solver.inith = self._time_step_size
     if self._absolute_tolerance is not None:
         solver.atol = self._absolute_tolerance
     if self._max_time_steps is not None:
         solver.maxsteps = self._max_time_steps
     if self._relative_tolerance is not None:
         solver.rtol = self._relative_tolerance
     if self._report:
         solver.verbosity = 10
         solver.display_progress = True
         solver.report_continuously = True
     else:
         solver.display_progress = False
         solver.verbosity = 50
     # Assert consistency of final time and time step size
     assert self._final_time is not None
     final_time_consistency = (
         self._final_time - self._initial_time) / self._time_step_size
     assert isclose(
         round(final_time_consistency), final_time_consistency
     ), ("Final time should be occuring after an integer number of time steps"
         )
     # Prepare monitor computation if not provided by parameters
     if self._monitor_initial_time is None:
         self._monitor_initial_time = self._initial_time
     assert isclose(
         round(self._monitor_initial_time / self._time_step_size),
         self._monitor_initial_time / self._time_step_size
     ), ("Monitor initial time should be a multiple of the time step size"
         )
     if self._monitor_time_step_size is None:
         self._monitor_time_step_size = self._time_step_size
     assert isclose(
         round(self._monitor_time_step_size / self._time_step_size),
         self._monitor_time_step_size / self._time_step_size
     ), ("Monitor time step size should be a multiple of the time step size"
         )
     monitor_t = arange(
         self._monitor_initial_time,
         self._final_time + self._monitor_time_step_size / 2.,
         self._monitor_time_step_size)
     # Solve
     solver.simulate(self._final_time, ncp_list=monitor_t)
Exemplo n.º 4
0
    def test_input_simulation(self):
        """
        This tests that input simulation works.
        """
        self.m_SENS = JMUModel('QuadTankSens.jmu')
        self.SENS = JMIDAESens(self.m_SENS)
        
        path_result = os.path.join(get_files_path(), 'Results', 
                                'qt_par_est_data.mat')
        
        data = loadmat(path_result,appendmat=False)

        # Extract data series  
        t_meas = data['t'][6000::100,0]-60  
        u1 = data['u1_d'][6000::100,0]
        u2 = data['u2_d'][6000::100,0]
                
        # Build input trajectory matrix for use in simulation
        u_data = N.transpose(N.vstack((t_meas,u1,u2)))

        u_traj = TrajectoryLinearInterpolation(u_data[:,0], 
                            u_data[:,1:])

        input_object = (['u1','u2'], u_traj)
        
        qt_mod = JMIDAESens(self.m_SENS, input_object)

        qt_sim = IDA(qt_mod)

        #Store data continuous during the simulation, important when solving a 
        #problem with sensitivites.
        qt_sim.report_continuously = True 
            
        #Value used when IDA estimates the tolerances on the parameters
        qt_sim.pbar = qt_mod.p0 
            
        #Let Sundials find consistent initial conditions by use of 'IDA_YA_YDP_INIT'
        qt_sim.make_consistent('IDA_YA_YDP_INIT')
            
        #Simulate
        qt_sim.simulate(60) #Simulate 4 seconds with 400 communication points

        #write_data(qt_sim)

        res = ResultDymolaTextual('QuadTankSens_result.txt')
    
        dx1da1 = res.get_variable_data('dx1/da1')
        dx1da2 = res.get_variable_data('dx1/da2')
        dx4da1 = res.get_variable_data('dx4/da1')
        
        nose.tools.assert_almost_equal(dx1da2.x[0], 0.000000, 4)
        nose.tools.assert_almost_equal(dx1da2.x[-1], 0.00000, 4)
    def test_input_simulation(self):
        """
        This tests that input simulation works.
        """
        self.m_SENS = JMUModel('QuadTankSens.jmu')
        self.SENS = JMIDAESens(self.m_SENS)
        
        path_result = os.path.join(get_files_path(), 'Results', 
                                'qt_par_est_data.mat')
        
        data = loadmat(path_result,appendmat=False)

        # Extract data series  
        t_meas = data['t'][6000::100,0]-60  
        u1 = data['u1_d'][6000::100,0]
        u2 = data['u2_d'][6000::100,0]
                
        # Build input trajectory matrix for use in simulation
        u_data = N.transpose(N.vstack((t_meas,u1,u2)))

        u_traj = TrajectoryLinearInterpolation(u_data[:,0], 
                            u_data[:,1:])

        input_object = (['u1','u2'], u_traj)
        
        qt_mod = JMIDAESens(self.m_SENS, input_object)

        qt_sim = IDA(qt_mod)

        #Store data continuous during the simulation, important when solving a 
        #problem with sensitivites.
        qt_sim.report_continuously = True 
            
        #Value used when IDA estimates the tolerances on the parameters
        qt_sim.pbar = qt_mod.p0 
            
        #Let Sundials find consistent initial conditions by use of 'IDA_YA_YDP_INIT'
        qt_sim.make_consistent('IDA_YA_YDP_INIT')
            
        #Simulate
        qt_sim.simulate(60) #Simulate 4 seconds with 400 communication points

        #write_data(qt_sim)

        res = ResultDymolaTextual('QuadTankSens_result.txt')
    
        dx1da1 = res.get_variable_data('dx1/da1')
        dx1da2 = res.get_variable_data('dx1/da2')
        dx4da1 = res.get_variable_data('dx4/da1')
        
        nose.tools.assert_almost_equal(dx1da2.x[0], 0.000000, 4)
        nose.tools.assert_almost_equal(dx1da2.x[-1], 0.00000, 4)
Exemplo n.º 6
0
    def initialize_ode_solver(self, y_0, yd_0, t_0):
        model = Implicit_Problem(self.residual, y_0, yd_0, t_0)
        model.handle_result = self.handle_result
        solver = IDA(model)
        solver.rtol = self.solver_rtol
        solver.atol = self.solver_atol  # * np.array([100, 10, 1e-4, 1e-4])
        solver.inith = 0.1  # self.wind.R_g / const.C
        solver.maxh = self.dt * self.wind.R_g / const.C
        solver.report_continuously = True
        solver.display_progress = False
        solver.verbosity = 50  # 50 = quiet
        solver.num_threads = 3

        # solver.display_progress = True
        return solver
Exemplo n.º 7
0
    def buildsim(self, ):
        """
        Setup the assimulo IDA simulator.
        """
        # Create an Assimulo implicit solver (IDA)
        imp_sim = IDA(self.imp_mod)  # Create a IDA solver

        # Sets the paramters
        # 1e-4 #Default 1e-6
        imp_sim.atol = self.p.RunInput['TIMESTEPPING']['SOLVER_TOL']
        # 1e-4 #Default 1e-6
        imp_sim.rtol = self.p.RunInput['TIMESTEPPING']['SOLVER_TOL']
        # Suppres the algebraic variables on the error test
        imp_sim.suppress_alg = True

        imp_sim.display_progress = False
        imp_sim.verbosity = 50
        imp_sim.report_continuously = True
        imp_sim.time_limit = 10.

        self.imp_sim = imp_sim
Exemplo n.º 8
0
def run_example(with_plots=True):
    r"""
    Example of the use of IDA for an implicit differential equation
    with a discontinuity (state event) and the need for an event iteration.
    
    on return:
    
       - :dfn:`imp_mod`    problem instance

       - :dfn:`imp_sim`    solver instance
    """
    
    #Create an instance of the problem
    imp_mod = Extended_Problem() #Create the problem

    imp_sim = IDA(imp_mod) #Create the solver
    
    imp_sim.verbosity = 0
    imp_sim.report_continuously = True

    #Simulate
    t, y, yd = imp_sim.simulate(10.0,1000) #Simulate 10 seconds with 1000 communications points
    
     #Plot
    if with_plots:
        import pylab as P
        P.plot(t,y)
        P.title(imp_mod.name)
        P.ylabel('States')
        P.xlabel('Time')
        P.show()
    
    #Basic test
    nose.tools.assert_almost_equal(y[-1][0],8.0)
    nose.tools.assert_almost_equal(y[-1][1],3.0)
    nose.tools.assert_almost_equal(y[-1][2],2.0)
    
    return imp_mod, imp_sim
Exemplo n.º 9
0
def run_example(with_plots=True):
    """
    This example show how to use Assimulo and IDA for simulating sensitivities
    for initial conditions.::
    
        0 = dy1/dt - -(k01+k21+k31)*y1 - k12*y2 - k13*y3 - b1
        0 = dy2/dt - k21*y1 + (k02+k12)*y2
        0 = dy3/dt - k31*y1 + k13*y3
     
        y1(0) = p1, y2(0) = p2, y3(0) = p3
        p1=p2=p3 = 0 
    
    See http://sundials.2283335.n4.nabble.com/Forward-sensitivities-for-initial-conditions-td3239724.html
    
    on return:
    
       - :dfn:`imp_mod`    problem instance
    
       - :dfn:`imp_sim`    solver instance
    
    """
    def f(t, y, yd, p):
        y1, y2, y3 = y
        yd1, yd2, yd3 = yd
        k01 = 0.0211
        k02 = 0.0162
        k21 = 0.0111
        k12 = 0.0124
        k31 = 0.0039
        k13 = 0.000035
        b1 = 49.3

        res_0 = -yd1 - (k01 + k21 + k31) * y1 + k12 * y2 + k13 * y3 + b1
        res_1 = -yd2 + k21 * y1 - (k02 + k12) * y2
        res_2 = -yd3 + k31 * y1 - k13 * y3

        return N.array([res_0, res_1, res_2])

    #The initial conditions
    y0 = [0.0, 0.0, 0.0]  #Initial conditions for y
    yd0 = [49.3, 0., 0.]
    p0 = [0.0, 0.0, 0.0]  #Initial conditions for parameters
    yS0 = N.array([[1, 0, 0], [0, 1, 0], [0, 0, 1.]])

    #Create an Assimulo implicit problem
    imp_mod = Implicit_Problem(f,
                               y0,
                               yd0,
                               p0=p0,
                               name='Example: Computing Sensitivities')

    #Sets the options to the problem
    imp_mod.yS0 = yS0

    #Create an Assimulo explicit solver (IDA)
    imp_sim = IDA(imp_mod)

    #Sets the paramters
    imp_sim.rtol = 1e-7
    imp_sim.atol = 1e-6
    imp_sim.pbar = [
        1, 1, 1
    ]  #pbar is used to estimate the tolerances for the parameters
    imp_sim.report_continuously = True  #Need to be able to store the result using the interpolate methods
    imp_sim.sensmethod = 'SIMULTANEOUS'  #Defines the sensitvity method used
    imp_sim.suppress_sens = False  #Dont suppress the sensitivity variables in the error test.

    #Simulate
    t, y, yd = imp_sim.simulate(400)  #Simulate 400 seconds

    #Basic test
    nose.tools.assert_almost_equal(y[-1][0], 1577.6552477, 3)
    nose.tools.assert_almost_equal(y[-1][1], 611.9574565, 3)
    nose.tools.assert_almost_equal(y[-1][2], 2215.88563217, 3)
    nose.tools.assert_almost_equal(imp_sim.p_sol[0][1][0], 1.0)

    #Plot
    if with_plots:
        P.figure(1)
        P.subplot(221)
        P.plot(t,
               N.array(imp_sim.p_sol[0])[:, 0], t,
               N.array(imp_sim.p_sol[0])[:, 1], t,
               N.array(imp_sim.p_sol[0])[:, 2])
        P.title("Parameter p1")
        P.legend(("p1/dy1", "p1/dy2", "p1/dy3"))
        P.subplot(222)
        P.plot(t,
               N.array(imp_sim.p_sol[1])[:, 0], t,
               N.array(imp_sim.p_sol[1])[:, 1], t,
               N.array(imp_sim.p_sol[1])[:, 2])
        P.title("Parameter p2")
        P.legend(("p2/dy1", "p2/dy2", "p2/dy3"))
        P.subplot(223)
        P.plot(t,
               N.array(imp_sim.p_sol[2])[:, 0], t,
               N.array(imp_sim.p_sol[2])[:, 1], t,
               N.array(imp_sim.p_sol[2])[:, 2])
        P.title("Parameter p3")
        P.legend(("p3/dy1", "p3/dy2", "p3/dy3"))
        P.subplot(224)
        P.title('ODE Solution')
        P.plot(t, y)
        P.suptitle(imp_mod.name)
        P.show()

        return imp_mod, imp_sim
Exemplo n.º 10
0
def dae_solver(residual,
               y0,
               yd0,
               t0,
               p0=None,
               jac=None,
               name='DAE',
               solver='IDA',
               algvar=None,
               atol=1e-6,
               backward=False,
               display_progress=True,
               pbar=None,
               report_continuously=False,
               rtol=1e-6,
               sensmethod='STAGGERED',
               suppress_alg=False,
               suppress_sens=False,
               usejac=False,
               usesens=False,
               verbosity=30,
               tfinal=10.,
               ncp=500):
    '''
    DAE solver.

    Parameters
    ----------
    residual: function
        Implicit DAE model.
    y0: List[float]
        Initial model state.
    yd0: List[float]
        Initial model state derivatives.
    t0: float
        Initial simulation time.
    p0: List[float]
        Parameters for which sensitivites are to be calculated.
    jac: function
        Model jacobian.
    name: string
        Model name.
    solver: string
        DAE solver.
    algvar: List[bool]
        A list for defining which variables are differential and which are algebraic.
        The value True(1.0) indicates a differential variable and the value False(0.0) indicates an algebraic variable.
    atol: float
        Absolute tolerance.
    backward: bool
        Specifies if the simulation is done in reverse time.
    display_progress: bool
        Actives output during the integration in terms of that the current integration is periodically printed to the stdout.
        Report_continuously needs to be activated.
    pbar: List[float]
        An array of positive floats equal to the number of parameters. Default absolute values of the parameters.
        Specifies the order of magnitude for the parameters. Useful if IDAS is to estimate tolerances for the sensitivity solution vectors.
    report_continuously: bool
        Specifies if the solver should report the solution continuously after steps.
    rtol: float
        Relative tolerance.
    sensmethod: string
        Specifies the sensitivity solution method.
        Can be either ‘SIMULTANEOUS’ or ‘STAGGERED’. Default is 'STAGGERED'.
    suppress_alg: bool
        Indicates that the error-tests are suppressed on algebraic variables.
    suppress_sens: bool
        Indicates that the error-tests are suppressed on the sensitivity variables.
    usejac: bool
        Sets the option to use the user defined jacobian.
    usesens: bool
        Aactivates or deactivates the sensitivity calculations.
    verbosity: int
        Determines the level of the output.
        QUIET = 50 WHISPER = 40 NORMAL = 30 LOUD = 20 SCREAM = 10
    tfinal: float
        Simulation final time.
    ncp: int
        Number of communication points (number of return points).

    Returns
    -------
    sol: solution [time, model states], List[float]
    '''
    if usesens is True:  # parameter sensitivity
        model = Implicit_Problem(residual, y0, yd0, t0, p0=p0)
    else:
        model = Implicit_Problem(residual, y0, yd0, t0)

    model.name = name

    if usejac is True:  # jacobian
        model.jac = jac

    if algvar is not None:  # differential or algebraic variables
        model.algvar = algvar

    if solver == 'IDA':  # solver
        from assimulo.solvers import IDA
        sim = IDA(model)

    sim.atol = atol
    sim.rtol = rtol
    sim.backward = backward  # backward in time
    sim.report_continuously = report_continuously
    sim.display_progress = display_progress
    sim.suppress_alg = suppress_alg
    sim.verbosity = verbosity

    if usesens is True:  # sensitivity
        sim.sensmethod = sensmethod
        sim.pbar = np.abs(p0)
        sim.suppress_sens = suppress_sens

    # Simulation
    # t, y, yd = sim.simulate(tfinal, ncp=(ncp - 1))
    ncp_list = np.linspace(t0, tfinal, num=ncp, endpoint=True)
    t, y, yd = sim.simulate(tfinal, ncp=0, ncp_list=ncp_list)

    # Plot
    # sim.plot()

    # plt.figure()
    # plt.subplot(221)
    # plt.plot(t, y[:, 0], 'b.-')
    # plt.legend([r'$\lambda$'])
    # plt.subplot(222)
    # plt.plot(t, y[:, 1], 'r.-')
    # plt.legend([r'$\dot{\lambda}$'])
    # plt.subplot(223)
    # plt.plot(t, y[:, 2], 'k.-')
    # plt.legend([r'$\eta$'])
    # plt.subplot(224)
    # plt.plot(t, y[:, 3], 'm.-')
    # plt.legend([r'$\dot{\eta}$'])

    # plt.figure()
    # plt.subplot(221)
    # plt.plot(t, yd[:, 0], 'b.-')
    # plt.legend([r'$\dot{\lambda}$'])
    # plt.subplot(222)
    # plt.plot(t, yd[:, 1], 'r.-')
    # plt.legend([r'$\ddot{\lambda}$'])
    # plt.subplot(223)
    # plt.plot(t, yd[:, 2], 'k.-')
    # plt.legend([r'$\dot{\eta}$'])
    # plt.subplot(224)
    # plt.plot(t, yd[:, 3], 'm.-')
    # plt.legend([r'$\ddot{\eta}$'])

    # plt.figure()
    # plt.subplot(121)
    # plt.plot(y[:, 0], y[:, 1])
    # plt.xlabel(r'$\lambda$')
    # plt.ylabel(r'$\dot{\lambda}$')
    # plt.subplot(122)
    # plt.plot(y[:, 2], y[:, 3])
    # plt.xlabel(r'$\eta$')
    # plt.ylabel(r'$\dot{\eta}$')

    # plt.figure()
    # plt.subplot(121)
    # plt.plot(yd[:, 0], yd[:, 1])
    # plt.xlabel(r'$\dot{\lambda}$')
    # plt.ylabel(r'$\ddot{\lambda}$')
    # plt.subplot(122)
    # plt.plot(yd[:, 2], yd[:, 3])
    # plt.xlabel(r'$\dot{\eta}$')
    # plt.ylabel(r'$\ddot{\eta}$')

    # plt.figure()
    # plt.subplot(121)
    # plt.plot(y[:, 0], y[:, 2])
    # plt.xlabel(r'$\lambda$')
    # plt.ylabel(r'$\eta$')
    # plt.subplot(122)
    # plt.plot(y[:, 1], y[:, 3])
    # plt.xlabel(r'$\dot{\lambda}$')
    # plt.ylabel(r'$\dot{\eta}$')

    # plt.figure()
    # plt.subplot(121)
    # plt.plot(yd[:, 0], yd[:, 2])
    # plt.xlabel(r'$\dot{\lambda}$')
    # plt.ylabel(r'$\dot{\eta}$')
    # plt.subplot(122)
    # plt.plot(yd[:, 1], yd[:, 3])
    # plt.xlabel(r'$\ddot{\lambda}$')
    # plt.ylabel(r'$\ddot{\eta}$')

    # plt.show()

    sol = [t, y, yd]
    return sol
Exemplo n.º 11
0
def run_example(with_plots=True):
    r"""
    This is the same example from the Sundials package (cvsRoberts_FSA_dns.c)
    Its purpose is to demonstrate the use of parameters in the differential equation.

    This simple example problem for IDA, due to Robertson
    see http://www.dm.uniba.it/~testset/problems/rober.php,
    is from chemical kinetics, and consists of the system:

    .. math::

       \dot y_1 -( -p_1 y_1 + p_2 y_2 y_3)&=0 \\
       \dot y_2 -(p_1 y_1 - p_2 y_2 y_3 - p_3 y_2^2)&=0  \\
       \dot y_3 -( p_3  y_ 2^2)&=0


    on return:

       - :dfn:`imp_mod`    problem instance

       - :dfn:`imp_sim`    solver instance

    """

    def f(t, y, yd, p):
        res1 = -p[0] * y[0] + p[1] * y[1] * y[2] - yd[0]
        res2 = p[0] * y[0] - p[1] * y[1] * y[2] - p[2] * y[1] ** 2 - yd[1]
        res3 = y[0] + y[1] + y[2] - 1

        return N.array([res1, res2, res3])

    # The initial conditons
    y0 = N.array([1.0, 0.0, 0.0])  # Initial conditions for y
    yd0 = N.array([0.1, 0.0, 0.0])  # Initial conditions for dy/dt
    p0 = [0.040, 1.0e4, 3.0e7]  # Initial conditions for parameters

    # Create an Assimulo implicit problem
    imp_mod = Implicit_Problem(f, y0, yd0, p0=p0)

    # Create an Assimulo implicit solver (IDA)
    imp_sim = IDA(imp_mod)  # Create a IDA solver

    # Sets the paramters
    imp_sim.atol = N.array([1.0e-8, 1.0e-14, 1.0e-6])
    imp_sim.algvar = [1.0, 1.0, 0.0]
    imp_sim.suppress_alg = False  # Suppres the algebraic variables on the error test
    imp_sim.report_continuously = True  # Store data continuous during the simulation
    imp_sim.pbar = p0
    imp_sim.suppress_sens = False  # Dont suppress the sensitivity variables in the error test.

    # Let Sundials find consistent initial conditions by use of 'IDA_YA_YDP_INIT'
    imp_sim.make_consistent('IDA_YA_YDP_INIT')

    # Simulate
    t, y, yd = imp_sim.simulate(4, 400)  # Simulate 4 seconds with 400 communication points
    print(imp_sim.p_sol[0][-1], imp_sim.p_sol[1][-1], imp_sim.p_sol[0][-1])

    # Basic test
    nose.tools.assert_almost_equal(y[-1][0], 9.05518032e-01, 4)
    nose.tools.assert_almost_equal(y[-1][1], 2.24046805e-05, 4)
    nose.tools.assert_almost_equal(y[-1][2], 9.44595637e-02, 4)
    nose.tools.assert_almost_equal(imp_sim.p_sol[0][-1][0], -1.8761, 2)  # Values taken from the example in Sundials
    nose.tools.assert_almost_equal(imp_sim.p_sol[1][-1][0], 2.9614e-06, 8)
    nose.tools.assert_almost_equal(imp_sim.p_sol[2][-1][0], -4.9334e-10, 12)

    # Plot
    if with_plots:
        P.plot(t, y)
        P.title(imp_mod.name)
        P.xlabel('Time')
        P.ylabel('State')
        P.show()

    return imp_mod, imp_sim
Exemplo n.º 12
0
    def DAE_integration_assimulo(self, **kwargs):
        """
        Perform time integration for DAEs with the assimulo package
        """
        assert self.set_time_setting == 1, 'Time discretization must be specified first'
        
        if self.tclose > 0:
            close    = True
        else:
            close    = False
            
        # Control vector
        self.U = interpolate(self.boundary_cntrl_space, self.Vb).vector()[self.bndr_i_b]
        if self.discontinous_boundary_values == 1:
            self.U[self.Corner_indices] = self.U[self.Corner_indices]/2

        # Definition of the sparse solver for the DAE res function to
        # be defined next M should be invertible !! 
        my_solver = factorized(csc_matrix(self.M))
        rhs       = self.my_mult(self.J, self.my_mult(self.Q,self.A0)) + self.my_mult(self.Bext,self.U* self.boundary_cntrl_time(0.,self.tclose))
        self.AD0  = my_solver(rhs) 
        
        # Definition of the rhs function required in assimulo
        def res(t,y,yd):
            """
            Definition of the residual function required in the DAE part of assimulo
            """   
            if close:
                if t < self.tclose:
                    z = self.my_mult(self.M,yd) - self.my_mult(self.J, self.my_mult(self.Q,y)) - self.my_mult(self.Bext,self.U* self.boundary_cntrl_time(t,self.tclose))
                else:
                    z = self.my_mult(self.M,yd) - self.my_mult((self.J - self.R), self.my_mult(self.Q,y))
            else:
                z = self.my_mult(self.M,yd) - self.my_mult(self.J, self.my_mult(self.Q,y)) - self.my_mult(self.Bext,self.U* self.boundary_cntrl_time(t,self.tclose)) 
            
            return z
  

        # Definition of the jacobian function required in assimulo
        def jac(c,t,y,yd):
            """
            Definition of the Jacobian matrix required in the DAE part of assimulo
            """  
            Matrix = csr_matrix(self.my_mult(self.J,self.Q))
            
            if close and t > self.tclose:
                    Matrix = csr_matrix(self.my_mult(self.J - self.R, self.Q))
            
            return c*csr_matrix(self.M) - Matrix
        
        # Definition of the jacobian matrix vector function required in assimulo
        def jacv(t,y,yd,res,v,c):
            """
            Jacobian matrix-vector product required in the DAE part of assimulo
            """  
            w = self.my_mult(self.Q, v)
            z = self.my_mult(self.J, w)
            
            if close and t > self.tclose:
                z -= self.my_mult(self.R, w)
                
            return c*self.my_mult(self.M,v) - z
        
        print('DAE Integration using assimulo built-in functions:')

        
        model                     = Implicit_Problem(res,self.A0,self.AD0,self.tinit)
        model.jacv                = jacv
        #sim                       = Radau5DAE(model,**kwargs)
        #
        # IDA method from Assimulo
        #
        sim                       = IDA(model,**kwargs)
        sim.algvar                = [1 for i in range(self.M.shape[0])]
        sim.atol                  = 1.e-6
        sim.rtol                  = 1.e-6
        sim.report_continuously   = True
        ncp                       = self.Nt
        sim.usejac                = True
        sim.suppress_alg          = True
        sim.inith                 = self.dt
        sim.maxord                = 5
        #sim.linear_solver         = 'SPGMR'
        time_span, DAE_y, DAE_yd  = sim.simulate(self.tfinal,ncp)
        
        #print(sim.get_options())
        print(sim.print_statistics())
        
        A_dae = DAE_y.transpose()
        
        # Hamiltonian
        self.Nt    = A_dae.shape[1]
        self.tspan = np.array(time_span)
        
        Ham_dae = np.zeros(self.Nt)
        
        for k in range(self.Nt):
            #Ham_dae[k] = 1/2 * A_dae[:,k] @ self.M @ self.Q @ A_dae[:,k]
            Ham_dae[k] = 1/2 * self.my_mult(A_dae[:,k].T, \
                               self.my_mult(self.M, self.my_mult(self.Q, A_dae[:,k])))
      
        # Get q variables
        Aq_dae = A_dae[:self.Nq,:] 
        
        # Get p variables
        Ap_dae = A_dae[self.Nq:,:]

        # Get Deformation
        Rho = np.zeros(self.Np)
        for i in range(self.Np):
            Rho[i] = self.rho(self.coord_p[i])
            
        W_dae = np.zeros((self.Np,self.Nt))
        theta = .5
        for k in range(self.Nt-1):
            W_dae[:,k+1] = W_dae[:,k] + self.dt * 1/Rho[:] * ( theta * Ap_dae[:,k+1] + (1-theta) * Ap_dae[:,k] ) 

        self.Ham_dae = Ham_dae
    
        return Aq_dae, Ap_dae, Ham_dae, W_dae, np.array(time_span)    
Exemplo n.º 13
0
def run_example(with_plots=True):
    r"""
    Example for demonstrating the use of a user supplied Jacobian
    
    ODE:
    
    .. math::
       
        \dot y_1-y_3 &= 0 \\
        \dot y_2-y_4 &= 0 \\
        \dot y_3+y_5 y_1 &= 0 \\
        \dot y_4+y_5 y_2+9.82&= 0 \\
        y_3^2+y_4^2-y_5(y_1^2+y_2^2)-9.82 y_2&= 0 
    
    on return:
    
       - :dfn:`imp_mod`    problem instance
    
       - :dfn:`imp_sim`    solver instance
       
    """
    global order
    order = []

    #Defines the residual
    def f(t, y, yd):

        res_0 = yd[0] - y[2]
        res_1 = yd[1] - y[3]
        res_2 = yd[2] + y[4] * y[0]
        res_3 = yd[3] + y[4] * y[1] + 9.82
        res_4 = y[2]**2 + y[3]**2 - y[4] * (y[0]**2 + y[1]**2) - y[1] * 9.82

        return N.array([res_0, res_1, res_2, res_3, res_4])

    def handle_result(solver, t, y, yd):
        global order
        order.append(solver.get_last_order())

        solver.t_sol.extend([t])
        solver.y_sol.extend([y])
        solver.yd_sol.extend([yd])

    #The initial conditons
    y0 = [1.0, 0.0, 0.0, 0.0, 5]  #Initial conditions
    yd0 = [0.0, 0.0, 0.0, -9.82, 0.0]  #Initial conditions

    #Create an Assimulo implicit problem
    imp_mod = Implicit_Problem(f,
                               y0,
                               yd0,
                               name='Example for plotting used order')
    imp_mod.handle_result = handle_result

    #Sets the options to the problem
    imp_mod.algvar = [1.0, 1.0, 1.0, 1.0, 0.0]  #Set the algebraic components

    #Create an Assimulo implicit solver (IDA)
    imp_sim = IDA(imp_mod)  #Create a IDA solver

    #Sets the paramters
    imp_sim.atol = 1e-6  #Default 1e-6
    imp_sim.rtol = 1e-6  #Default 1e-6
    imp_sim.suppress_alg = True  #Suppres the algebraic variables on the error test
    imp_sim.report_continuously = True

    #Let Sundials find consistent initial conditions by use of 'IDA_YA_YDP_INIT'
    imp_sim.make_consistent('IDA_YA_YDP_INIT')

    #Simulate
    t, y, yd = imp_sim.simulate(5)  #Simulate 5 seconds

    #Basic tests
    nose.tools.assert_almost_equal(y[-1][0], 0.9401995, places=4)
    nose.tools.assert_almost_equal(y[-1][1], -0.34095124, places=4)
    nose.tools.assert_almost_equal(yd[-1][0], -0.88198927, places=4)
    nose.tools.assert_almost_equal(yd[-1][1], -2.43227069, places=4)
    nose.tools.assert_almost_equal(order[-1], 5, places=4)

    #Plot
    if with_plots:
        P.figure(1)
        P.plot(t, y, linestyle="dashed", marker="o")  #Plot the solution
        P.xlabel('Time')
        P.ylabel('State')
        P.title(imp_mod.name)

        P.figure(2)
        P.plot([0] + N.add.accumulate(N.diff(t)).tolist(), order)
        P.title("Used order during the integration")
        P.xlabel("Time")
        P.ylabel("Order")
        P.show()

    return imp_mod, imp_sim
Exemplo n.º 14
0
#imp_mod.set_iapp( I_app/10. )
#imp_sim.make_consistent('IDA_YA_YDP_INIT')
#ta, ya, yda = imp_sim.simulate(0.1,5)
##
#imp_mod.set_iapp( I_app/2. )
#imp_sim.make_consistent('IDA_YA_YDP_INIT')
#tb, yb, ydb = imp_sim.simulate(0.2,5)

#imp_mod.set_iapp( I_app )
#imp_sim.make_consistent('IDA_YA_YDP_INIT')
## Sim step 1
#t1, y1, yd1 = imp_sim.simulate(1./Crate*3600.*0.2,100)

imp_sim.display_progress = False
imp_sim.verbosity = 50
imp_sim.report_continuously = True
imp_sim.time_limit = 10.

### Simulate
t01, t02 = 0.1, 0.2

imp_mod.set_iapp(I_app / 10.)
imp_sim.make_consistent('IDA_YA_YDP_INIT')
ta, ya, yda = imp_sim.simulate(t01, 2)

imp_mod.set_iapp(I_app / 2.)
imp_sim.make_consistent('IDA_YA_YDP_INIT')
tb, yb, ydb = imp_sim.simulate(t02, 2)

print 'yb shape', yb.shape
Exemplo n.º 15
0
    def DAE_integration_assimulo_lagrangian(self, **kwargs):
        """
        Perform time integration for DAEs with the assimulo package
        Lagrangian variant
        """
        assert self.set_time_setting == 1, 'Time discretization must be specified first'
        
        if self.tclose > 0:
            close    = True
        else:
            close    = False
            
        # Control vector
        self.U = interpolate(self.boundary_cntrl_space, self.Vl).vector()[self.bndr_i_l]
        if self.discontinous_boundary_values == 1:
            self.U[self.Corner_indices] = self.U[self.Corner_indices]/2
            
        self.UU = np.zeros(self.Nb)
        for i in range(self.Nb):
            self.UU[i] = self.boundary_cntrl_space(self.coord_b[i])
        

        # Definition of the sparse solver for the DAE res function to
        # be defined next M should be invertible !! 
        #my_solver = factorized(csc_matrix(self.M))
        #rhs       = self.my_mult(self.J, self.my_mult(self.Q,self.A0)) + self.my_mult(self.Bext,self.U* self.boundary_cntrl_time(0.,self.tclose))
        #self.AD0  = my_solver(rhs) 
        
        # Definition of the rhs function required in assimulo
        def res(t,y,yd):
            """
            Definition of the residual function required in the DAE part of assimulo
            """   
            z                                    = np.zeros(self.Np+self.Nl)        
            z[0:self.Np]                         = self.my_mult(self.M_class, yd[0:self.Np])  + self.my_mult(self.D_class, y[0:self.Np]) - self.my_mult(self.C_class, y[self.Np:])
            z[self.Np:self.Np+self.Nl]           = self.my_mult(self.C_class.T, y[0:self.Np]) - self.L_class * self.boundary_cntrl_time(t,self.tclose)
            
            return z
  
        # Definition of the jacobian function required in assimulo
        def jac(c,t,y,yd):
            """
            Definition of the Jacobian matrix required in the DAE part of assimulo
            """  
            #Matrix = csr_matrix(self.my_mult(self.J,self.Q))
            
            #if close and t > self.tclose:
            #        Matrix = csr_matrix(self.my_mult(self.J - self.R, self.Q))
            
            #return c*csr_matrix(self.M) - Matrix
            
            return None
        
        # Definition of the jacobian matrix vector function required in assimulo
        def jacv(t,y,yd,res,v,c):
            """
            Jacobian matrix-vector product required in the DAE part of assimulo
            """  
            #w = self.my_mult(self.Q, v)
            #z = self.my_mult(self.J, w)
            
            #if close and t > self.tclose:
            #    z -= self.my_mult(self.R, w)
                
            #return c*self.my_mult(self.M,v) - z
            
            return None
        
        print('DAE Integration using assimulo built-in functions:')

        #def handle_result(solver, t ,y, yd):
        #    global order
        #    order.append(solver.get_last_order())
        # 
        #     solver.t_sol.extend([t])
        #    solver.y_sol.extend([y])
        #    solver.yd_sol.extend([yd]) 
            
        # The initial conditons
        y0  =  np.concatenate(( self.Tp0, np.zeros(self.Nl) )) 
        yd0 =  np.zeros(self.Np + self.Nl)     
        
        model                     = Implicit_Problem(res,y0,yd0,self.tinit)
        #model.handle_result       = handle_result
        #model.jacv                = jacv
        #sim                       = Radau5DAE(model,**kwargs)
        #
        # IDA method from Assimulo
        #
        sim                       = IDA(model,**kwargs)
        sim.algvar                = list(np.concatenate((np.ones(self.Np), np.zeros(self.Nl) )) )
        sim.atol                  = 1.e-6
        sim.rtol                  = 1.e-6
        sim.report_continuously   = True
        ncp                       = self.Nt
        #sim.usejac                = True
        sim.suppress_alg          = True
        sim.inith                 = self.dt
        sim.maxord                = 5
        #sim.linear_solver         = 'SPGMR'
        sim.make_consistent('IDA_YA_YDP_INIT')
        
        #time_span, DAE_y, DAE_yd  = sim.simulate(self.tfinal,ncp, self.tspan)
        time_span, DAE_y, DAE_yd  = sim.simulate(self.tfinal, 0, self.tspan)
        
        #print(sim.get_options())
        print(sim.print_statistics())
        
        A_dae = DAE_y[:,0:self.Np].transpose()
                
        # Hamiltonian
        self.Nt    = A_dae.shape[1]
        self.tspan = np.array(time_span)
        
        Ham_dae = np.zeros(self.Nt)
        
        for k in range(self.Nt):
            Ham_dae[k] = 1/2 * self.my_mult(A_dae[:,k].T, \
                               self.my_mult(self.Mp_rho_Cv, A_dae[:,k]))
      
        self.Ham_dae = Ham_dae
    
        return Ham_dae, np.array(time_span)