Exemplo n.º 1
0
def test_unpack_nddata(testdata, testvar, testmask):
    nd = NDAstroData(testdata, mask=testmask)
    nd.variance = testvar
    out_data, out_mask, out_var = NDStacker.none(nd)
    assert_allclose(out_data, testdata)
    assert_allclose(out_var, testvar)
    assert_allclose(out_mask, testmask)
Exemplo n.º 2
0
    def wrapper(sequence, scale=None, zero=None, *args, **kwargs):
        nddata_list = list(sequence)
        if scale is None:
            scale = [1.0] * len(nddata_list)
        if zero is None:
            zero = [0.0] * len(nddata_list)
        # Coerce all data to 32-bit floats. FITS data on disk is big-endian
        # and preserving that datatype will cause problems with Cython
        # stacking if the compiler is little-endian.
        dtype = np.float32
        data = np.empty((len(nddata_list),)+nddata_list[0].data.shape, dtype=dtype)
        for i, (ndd, s, z) in enumerate(zip(nddata_list, scale, zero)):
            data[i] = ndd.data * s + z
        if any(ndd.mask is None for ndd in nddata_list):
            mask = None
        else:
            mask = np.empty_like(data, dtype=DQ.datatype)
            for i, ndd in enumerate(nddata_list):
                mask[i] = ndd.mask
        if any(ndd.variance is None for ndd in nddata_list):
            variance = None
        else:
            variance = np.empty_like(data)
            for i, (ndd, s, z) in enumerate(zip(nddata_list, scale, zero)):
                variance[i] = ndd.variance * s*s
        out_data, out_mask, out_var = fn(data=data, mask=mask,
                                    variance=variance, *args, **kwargs)

        # Can't instantiate NDAstroData with variance
        ret_value = NDAstroData(out_data, mask=out_mask)
        if out_var is not None:
            ret_value.variance = out_var
        return ret_value
Exemplo n.º 3
0
def test_varclip():
    # Confirm rejection of high pixel and correct output DQ
    data = np.array([1., 1., 2., 2., 2., 100.]).reshape(6, 1)
    ndd = NDAstroData(data)
    ndd.mask = np.zeros_like(data, dtype=DQ.datatype)
    ndd.mask[5, 0] = DQ.saturated
    ndd.variance = np.ones_like(data)
    stackit = NDStacker(combine="mean", reject="varclip")
    result = stackit(ndd)
    np.testing.assert_array_almost_equal(result.data, [1.6])
    np.testing.assert_array_equal(result.mask, [0])
Exemplo n.º 4
0
def test_varclip():
    # Confirm rejection of high pixel and correct output DQ
    data = np.array([1., 1., 2., 2., 2., 100.]).reshape(6, 1)
    ndd = NDAstroData(data)
    ndd.mask = np.zeros_like(data, dtype=DQ.datatype)
    ndd.mask[5, 0] = DQ.saturated
    ndd.variance = np.ones_like(data)
    stackit = NDStacker(combine="mean", reject="varclip")
    result = stackit(ndd)
    assert_allclose(result.data, 1.6)  # 100 is rejected
    assert_allclose(result.mask, 0)

    data = np.array([1., 1., 2., 2., 2., 100.]).reshape(6, 1)
    ndd = NDAstroData(data)
    ndd.variance = np.ones_like(data)
    ndd.variance[5] = 400
    stackit = NDStacker(combine="mean", reject="varclip", lsigma=3, hsigma=3)
    result = stackit(ndd)
    assert_allclose(result.data, 1.6)  # 100 is rejected

    stackit = NDStacker(combine="mean", reject="varclip", lsigma=5, hsigma=5)
    result = stackit(ndd)
    assert_allclose(result.data, 18)  # 100 is not rejected
Exemplo n.º 5
0
    def standard_extraction(self, data, mask, var, aper_lower, aper_upper):
        """Uniform extraction across an aperture of width pixels"""
        slitlength = data.shape[0]
        all_x1 = self._center_pixels + aper_lower
        all_x2 = self._center_pixels + aper_upper

        ext = NDAstroData(data, mask=mask)
        ext.variance = var
        results = [sum1d(ext[:,i], x1, x2) for i, (x1, x2) in enumerate(zip(all_x1, all_x2))]
        self.data[:] = [result.data for result in results]
        if mask is not None:
            self.mask[:] = [result.mask for result in results]
        if var is not None:
            self.var[:] = [result.variance for result in results]
Exemplo n.º 6
0
def test_sum1d():
    big_value = 10
    data = np.ones((10, ))
    ndd = NDAstroData(data)
    ndd.mask = np.zeros_like(data, dtype=DQ.datatype)
    ndd.mask[1] = 1
    ndd.mask[2] = 2
    ndd.data[4] = big_value
    ndd.variance = np.ones_like(data)
    x1 = -0.5
    for x2 in np.arange(0., 4.5, 0.5):
        result = sum1d(ndd, x1, x2, proportional_variance=True)
        if x2 > 3.5:
            np.testing.assert_almost_equal(4 + big_value * (x2 - 3.5),
                                           result.data)
        else:
            np.testing.assert_almost_equal(x2 - x1, result.data)
        np.testing.assert_almost_equal(x2 - x1, result.variance)
        if x2 > 1.5:
            assert result.mask == 3
        elif x2 > 0.5:
            assert result.mask == 1
        else:
            assert result.mask == 0
Exemplo n.º 7
0
    def extract(self,
                ext,
                width=None,
                aper_lower=None,
                aper_upper=None,
                method='standard',
                dispaxis=None,
                viewer=None):
        """
        Extract a 1D spectrum by following the model trace and extracting in
        an aperture of a given number of pixels.

        Parameters
        ----------
        ext: single-slice AD object/ndarray
            spectral image from which spectrum is to be extracted
        width: float/None
            full width of extraction aperture (in pixels)
        aper_lower: float/None
            lower extraction limit (pixels)
        aper_upper: float/None
            upper extraction limit (pixels)
        method: str (standard|optimal)
            type of extraction
        dispaxis: int/None
            dispersion axis (python sense)
        viewer: Viewer/None
            Viewer object on which to display extraction apertures

        Returns
        -------
        NDAstroData: 1D spectrum
        """
        if width is not None:
            aper_upper = 0.5 * width
            aper_lower = -aper_upper
        if aper_lower is None:
            aper_lower = self.aper_lower
        if aper_upper is None:
            aper_upper = self.aper_upper

        if dispaxis is None:
            dispaxis = 2 - ext.dispersion_axis()  # python sense
        slitlength = ext.shape[1 - dispaxis]
        npix = ext.shape[dispaxis]
        direction = "row" if dispaxis == 0 else "column"

        self.check_domain(npix)

        if aper_lower > aper_upper:
            log.warning("Aperture lower limit is greater than upper limit.")
            aper_lower, aper_upper = aper_upper, aper_lower
        if aper_lower > 0:
            log.warning("Aperture lower limit is greater than zero.")
        if aper_upper < 0:
            log.warning("Aperture upper limit is less than zero.")

        # make data look like it's dispersed horizontally
        # (this is best for optimal extraction, but not standard)
        try:
            mask = ext.mask
        except AttributeError:  # ext is just an ndarray
            data = ext if dispaxis == 1 else ext.T
            mask = None
            var = None
        else:
            data = ext.data if dispaxis == 1 else ext.data.T
            if dispaxis == 0 and mask is not None:
                mask = mask.T
            var = ext.variance
            if dispaxis == 0 and var is not None:
                var = var.T

        # Avoid having to recalculate them
        self._center_pixels = self.model(np.arange(npix))
        all_x1 = self._center_pixels + aper_lower
        all_x2 = self._center_pixels + aper_upper
        if viewer is not None:
            # Display extraction edges on viewer, every 10 pixels (for speed)
            pixels = np.arange(npix)
            edge_coords = np.array([pixels, all_x1]).T
            viewer.polygon(edge_coords[::10],
                           closed=False,
                           xfirst=(dispaxis == 1),
                           origin=0)
            edge_coords = np.array([pixels, all_x2]).T
            viewer.polygon(edge_coords[::10],
                           closed=False,
                           xfirst=(dispaxis == 1),
                           origin=0)

        # Remember how pixel coordinates are defined!
        off_low = np.where(all_x1 < -0.5)[0]
        if len(off_low):
            log.warning(
                "Aperture extends off {} of image between {}s {} and {}".
                format(("left", "bottom")[dispaxis], direction, min(off_low),
                       max(off_low)))
        off_high = np.where(all_x2 >= slitlength - 0.5)[0]
        if len(off_high):
            log.warning(
                "Aperture extends off {} of image between {}s {} and {}".
                format(("right", "top")[dispaxis], direction, min(off_high),
                       max(off_high)))

        # Create the outputs here so the extraction function has access to them
        self.data = np.zeros((npix, ), dtype=np.float32)
        self.mask = None if mask is None else np.zeros_like(self.data,
                                                            dtype=DQ.datatype)
        self.var = None if var is None else np.zeros_like(self.data)

        extraction_func = getattr(self, "{}_extraction".format(method))
        extraction_func(data, mask, var, aper_lower, aper_upper)

        del self._center_pixels
        self._last_extraction = (aper_lower, aper_upper)
        ndd = NDAstroData(self.data, mask=self.mask)
        ndd.variance = self.var
        try:
            ndd.meta['header'] = ext.hdr.copy()
        except AttributeError:  # we only had an ndarray
            pass
        return ndd