def testCreateVariables_NCHW(self):
     height, width, groups = 3, 3, 4
     images = random_ops.random_uniform((5, 2 * groups, height, width),
                                        seed=1)
     normalization.group_norm(images,
                              groups=4,
                              channels_axis=-3,
                              reduction_axes=(-2, -1),
                              center=True,
                              scale=True)
     beta = contrib_variables.get_variables_by_name('beta')[0]
     gamma = contrib_variables.get_variables_by_name('gamma')[0]
     self.assertEqual('GroupNorm/beta', beta.op.name)
     self.assertEqual('GroupNorm/gamma', gamma.op.name)
 def testCreateOpFloat64(self):
     height, width, groups = 3, 3, 5
     images = random_ops.random_uniform((5, height, width, 4 * groups),
                                        dtype=dtypes.float64,
                                        seed=1)
     output = normalization.group_norm(images, groups=groups)
     self.assertEqual(dtypes.float64, output.dtype)
     self.assertListEqual([5, height, width, 4 * groups],
                          output.shape.as_list())
 def testParamsShapeNotFullyDefinedBatchAxis(self):
     height, width, groups = 3, 3, 4
     inputs = array_ops.placeholder(dtypes.float32,
                                    shape=(None, height, width, 2 * groups))
     output = normalization.group_norm(inputs,
                                       channels_axis=-1,
                                       reduction_axes=[-3, -2],
                                       groups=groups)
     self.assertListEqual([None, height, width, 2 * groups],
                          output.shape.as_list())
 def testCreateOp(self):
     height, width, groups = 3, 3, 4
     images = random_ops.random_uniform((5, height, width, 2 * groups),
                                        seed=1)
     output = normalization.group_norm(images,
                                       groups=groups,
                                       channels_axis=-1,
                                       reduction_axes=[-3, -2])
     print('name: ', output.op.name)
     self.assertListEqual([5, height, width, 2 * groups],
                          output.shape.as_list())
 def testCreateOpNoScaleCenter(self):
     height, width, groups = 3, 3, 7
     images = random_ops.random_uniform((5, height, width, 3 * groups),
                                        dtype=dtypes.float32,
                                        seed=1)
     output = normalization.group_norm(images,
                                       groups=groups,
                                       center=False,
                                       scale=False)
     self.assertListEqual([5, height, width, 3 * groups],
                          output.shape.as_list())
     self.assertEqual(0,
                      len(contrib_variables.get_variables_by_name('beta')))
     self.assertEqual(0,
                      len(contrib_variables.get_variables_by_name('gamma')))
 def testNotMutuallyExclusiveAxis(self):
     inputs = array_ops.placeholder(dtypes.float32, shape=(10, 32, 32, 32))
     # Specify axis with negative values.
     with self.assertRaisesRegexp(ValueError, 'mutually exclusive'):
         normalization.group_norm(inputs,
                                  channels_axis=-2,
                                  reduction_axes=[-2])
     # Specify axis with positive values.
     with self.assertRaisesRegexp(ValueError, 'mutually exclusive'):
         normalization.group_norm(inputs,
                                  channels_axis=1,
                                  reduction_axes=[1, 3])
     # Specify axis with mixed positive and negative values.
     with self.assertRaisesRegexp(ValueError, 'mutually exclusive'):
         normalization.group_norm(inputs,
                                  channels_axis=-2,
                                  reduction_axes=[2])
    def doOutputTest(self,
                     input_shape,
                     channels_axis=None,
                     reduction_axes=None,
                     mean_close_to_zero=False,
                     groups=2,
                     tol=1e-2):
        # Select the axis for the channel and the dimensions along which statistics
        # are accumulated.
        if channels_axis < 0:
            channels_axis += len(input_shape)
        reduced_axes = [channels_axis + 1]
        for a in reduction_axes:
            if a < 0:
                a += len(input_shape)
            if a < channels_axis:
                reduced_axes.append(a)
            else:
                reduced_axes.append(a + 1)
        reduced_axes = tuple(reduced_axes)

        # Calculate the final shape for the output Tensor.
        axes_before_channels = input_shape[:channels_axis]
        axes_after_channels = input_shape[channels_axis + 1:]
        channels = input_shape[channels_axis]
        outputs_shape = (axes_before_channels + [groups, channels // groups] +
                         axes_after_channels)

        # Calculate the final shape for the output statistics.
        reduced_shape = []
        for i, a in enumerate(outputs_shape):
            if i not in reduced_axes:
                reduced_shape.append(a)

        if mean_close_to_zero:
            mu_tuple = (1e-4, 1e-2, 1.0)
            sigma_tuple = (1e-2, 0.1, 1.0)
        else:
            mu_tuple = (1.0, 1e2)
            sigma_tuple = (1.0, 0.1)

        for mu in mu_tuple:
            for sigma in sigma_tuple:
                # Determine shape of Tensor after normalization.
                expected_mean = np.zeros(reduced_shape)
                expected_var = np.ones(reduced_shape)

                inputs = random_ops.random_normal(input_shape,
                                                  seed=0) * sigma + mu
                output_op = normalization.group_norm(
                    inputs,
                    groups=groups,
                    center=False,
                    scale=False,
                    channels_axis=channels_axis,
                    reduction_axes=reduction_axes,
                    mean_close_to_zero=mean_close_to_zero)
                with self.cached_session() as sess:
                    sess.run(variables.global_variables_initializer())
                    outputs = sess.run(output_op)
                    # Make sure that there are no NaNs
                    self.assertFalse(np.isnan(outputs).any())

                    outputs = np.reshape(outputs, outputs_shape)
                    mean = np.mean(outputs, axis=reduced_axes)
                    var = np.var(outputs, axis=reduced_axes)
                    # The mean and variance of each example should be close to 0 and 1
                    # respectively.
                    self.assertAllClose(expected_mean,
                                        mean,
                                        rtol=tol,
                                        atol=tol)
                    self.assertAllClose(expected_var, var, rtol=tol, atol=tol)
 def testParamsShapeNotFullyDefinedReductionAxes(self):
     inputs = array_ops.placeholder(dtypes.float32, shape=(1, 32, None, 4))
     with self.assertRaisesRegexp(ValueError, 'undefined dimensions'):
         normalization.group_norm(inputs)
 def testUnknownShape(self):
     inputs = array_ops.placeholder(dtypes.float32)
     with self.assertRaisesRegexp(ValueError, 'undefined rank'):
         normalization.group_norm(inputs)
 def testAxisIsBad(self):
     inputs = array_ops.placeholder(dtypes.float32, shape=(1, 2, 4, 5))
     with self.assertRaisesRegexp(ValueError, 'Axis is out of bounds.'):
         normalization.group_norm(inputs, channels_axis=5)
     with self.assertRaisesRegexp(ValueError, 'Axis is out of bounds.'):
         normalization.group_norm(inputs, reduction_axes=[1, 5])