Exemplo n.º 1
0
    def testTrainingSubsetsOfVariablesOnlyUpdatesThoseVariables(self):
        # First, train only the weights of the model.
        with ops.Graph().as_default():
            random_seed.set_random_seed(0)
            total_loss = self.ModelLoss()
            optimizer = gradient_descent.GradientDescentOptimizer(
                learning_rate=1.0)
            weights, biases = variables_lib.get_variables()

            train_op = training.create_train_op(total_loss, optimizer)
            train_weights = training.create_train_op(
                total_loss, optimizer, variables_to_train=[weights])
            train_biases = training.create_train_op(
                total_loss, optimizer, variables_to_train=[biases])

            with self.cached_session() as session:
                # Initialize the variables.
                session.run(variables_lib2.global_variables_initializer())

                # Get the initial weights and biases values.
                weights_values, biases_values = session.run([weights, biases])
                self.assertGreater(np.linalg.norm(weights_values), 0)
                self.assertAlmostEqual(np.linalg.norm(biases_values), 0)

                # Update weights and biases.
                loss = session.run(train_op)
                self.assertGreater(loss, .5)
                new_weights, new_biases = session.run([weights, biases])

                # Check that the weights and biases have been updated.
                self.assertGreater(
                    np.linalg.norm(weights_values - new_weights), 0)
                self.assertGreater(np.linalg.norm(biases_values - new_biases),
                                   0)

                weights_values, biases_values = new_weights, new_biases

                # Update only weights.
                loss = session.run(train_weights)
                self.assertGreater(loss, .5)
                new_weights, new_biases = session.run([weights, biases])

                # Check that the weights have been updated, but biases have not.
                self.assertGreater(
                    np.linalg.norm(weights_values - new_weights), 0)
                self.assertAlmostEqual(
                    np.linalg.norm(biases_values - new_biases), 0)
                weights_values = new_weights

                # Update only biases.
                loss = session.run(train_biases)
                self.assertGreater(loss, .5)
                new_weights, new_biases = session.run([weights, biases])

                # Check that the biases have been updated, but weights have not.
                self.assertAlmostEqual(
                    np.linalg.norm(weights_values - new_weights), 0)
                self.assertGreater(np.linalg.norm(biases_values - new_biases),
                                   0)
Exemplo n.º 2
0
 def dis_train_op():
     with ops.name_scope('discriminator_train'):
         return training.create_train_op(
             total_loss=gan_loss.discriminator_loss,
             optimizer=discriminator_optimizer,
             variables_to_train=gan_model.discriminator_variables,
             update_ops=dis_update_ops)
Exemplo n.º 3
0
 def gen_train_op():
     with ops.name_scope('generator_train'):
         return training.create_train_op(
             total_loss=gan_loss.generator_loss,
             optimizer=generator_optimizer,
             variables_to_train=gan_model.generator_variables,
             update_ops=gen_update_ops)
Exemplo n.º 4
0
    def _train_model(self, checkpoint_dir, num_steps):
        """Trains a simple classification model.

    Note that the data has been configured such that after around 300 steps,
    the model has memorized the dataset (e.g. we can expect %100 accuracy).

    Args:
      checkpoint_dir: The directory where the checkpoint is written to.
      num_steps: The number of steps to train for.
    """
        with ops.Graph().as_default():
            random_seed.set_random_seed(0)
            tf_inputs = constant_op.constant(self._inputs,
                                             dtype=dtypes.float32)
            tf_labels = constant_op.constant(self._labels,
                                             dtype=dtypes.float32)

            tf_predictions = logistic_classifier(tf_inputs)
            loss = loss_ops.log_loss(tf_predictions, tf_labels)

            optimizer = gradient_descent.GradientDescentOptimizer(
                learning_rate=1.0)
            train_op = training.create_train_op(loss, optimizer)

            loss = training.train(
                train_op,
                checkpoint_dir,
                hooks=[basic_session_run_hooks.StopAtStepHook(num_steps)])
Exemplo n.º 5
0
    def testTrainWithLocalVariable(self):
        with ops.Graph().as_default():
            random_seed.set_random_seed(0)
            tf_inputs = constant_op.constant(self._inputs,
                                             dtype=dtypes.float32)
            tf_labels = constant_op.constant(self._labels,
                                             dtype=dtypes.float32)

            local_multiplier = variables_lib.local_variable(1.0)

            tf_predictions = logistic_classifier(tf_inputs) * local_multiplier
            losses.log_loss(tf_labels, tf_predictions)
            total_loss = losses.get_total_loss()
            optimizer = gradient_descent.GradientDescentOptimizer(
                learning_rate=1.0)
            train_op = training.create_train_op(total_loss, optimizer)

            loss = training.train(
                train_op,
                None,
                hooks=[basic_session_run_hooks.StopAtStepHook(num_steps=300)],
                save_summaries_steps=None,
                save_checkpoint_secs=None)
            self.assertIsNotNone(loss)
            self.assertLess(loss, .015)
Exemplo n.º 6
0
    def create_train_op(self, learning_rate=1.0, gradient_multiplier=1.0):
        tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
        tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

        tf_predictions = logistic_classifier(tf_inputs)
        losses.log_loss(tf_labels, tf_predictions)
        total_loss = losses.get_total_loss()

        optimizer = gradient_descent.GradientDescentOptimizer(
            learning_rate=learning_rate)

        def transform_grads_fn(grads):
            if gradient_multiplier != 1.0:
                variables = variables_lib2.trainable_variables()
                gradient_multipliers = {
                    var: gradient_multiplier
                    for var in variables
                }

                with ops.name_scope('multiply_grads'):
                    return training.multiply_gradients(grads,
                                                       gradient_multipliers)
            else:
                return grads

        return training.create_train_op(total_loss,
                                        optimizer,
                                        transform_grads_fn=transform_grads_fn)
Exemplo n.º 7
0
    def testGlobalStepNotIncrementedWhenSetToNone(self):
        with ops.Graph().as_default():
            random_seed.set_random_seed(0)
            tf_inputs = constant_op.constant(self._inputs,
                                             dtype=dtypes.float32)
            tf_labels = constant_op.constant(self._labels,
                                             dtype=dtypes.float32)

            tf_predictions = batchnorm_classifier(tf_inputs)
            loss = losses.log_loss(tf_labels, tf_predictions)
            optimizer = gradient_descent.GradientDescentOptimizer(
                learning_rate=1.0)
            train_op = training.create_train_op(loss,
                                                optimizer,
                                                global_step=None)

            global_step = variables_lib.get_or_create_global_step()

            with self.cached_session() as session:
                # Initialize all variables
                session.run(variables_lib2.global_variables_initializer())

                for _ in range(10):
                    session.run(train_op)

                # Since train_op don't use global_step it shouldn't change.
                self.assertAllClose(global_step.eval(), 0)
Exemplo n.º 8
0
    def testEmptyUpdateOps(self):
        with ops.Graph().as_default():
            random_seed.set_random_seed(0)
            tf_inputs = constant_op.constant(self._inputs,
                                             dtype=dtypes.float32)
            tf_labels = constant_op.constant(self._labels,
                                             dtype=dtypes.float32)

            tf_predictions = batchnorm_classifier(tf_inputs)
            loss = losses.log_loss(tf_labels, tf_predictions)
            optimizer = gradient_descent.GradientDescentOptimizer(
                learning_rate=1.0)
            train_op = training.create_train_op(loss, optimizer, update_ops=[])

            moving_mean = variables_lib.get_variables_by_name('moving_mean')[0]
            moving_variance = variables_lib.get_variables_by_name(
                'moving_variance')[0]

            with self.cached_session() as session:
                # Initialize all variables
                session.run(variables_lib2.global_variables_initializer())
                mean, variance = session.run([moving_mean, moving_variance])
                # After initialization moving_mean == 0 and moving_variance == 1.
                self.assertAllClose(mean, [0] * 4)
                self.assertAllClose(variance, [1] * 4)

                for _ in range(10):
                    session.run(train_op)

                mean = moving_mean.eval()
                variance = moving_variance.eval()

                # Since we skip update_ops the moving_vars are not updated.
                self.assertAllClose(mean, [0] * 4)
                self.assertAllClose(variance, [1] * 4)
Exemplo n.º 9
0
    def testTrainOpInCollection(self):
        with ops.Graph().as_default():
            tf_inputs = constant_op.constant(self._inputs,
                                             dtype=dtypes.float32)
            tf_labels = constant_op.constant(self._labels,
                                             dtype=dtypes.float32)

            tf_predictions = batchnorm_classifier(tf_inputs)
            loss = losses.log_loss(tf_labels, tf_predictions)
            optimizer = gradient_descent.GradientDescentOptimizer(
                learning_rate=1.0)
            train_op = training.create_train_op(loss, optimizer)

            # Make sure the training op was recorded in the proper collection
            self.assertTrue(
                train_op in ops.get_collection(ops.GraphKeys.TRAIN_OP))
Exemplo n.º 10
0
    def testResumeTrainAchievesRoughlyTheSameLoss(self):
        number_of_steps = [300, 1, 5]
        logdir = os.path.join(self.get_temp_dir(), 'resume_train_same_loss')

        for i in range(len(number_of_steps)):
            with ops.Graph().as_default():
                random_seed.set_random_seed(i)
                tf_inputs = constant_op.constant(self._inputs,
                                                 dtype=dtypes.float32)
                tf_labels = constant_op.constant(self._labels,
                                                 dtype=dtypes.float32)

                tf_predictions = logistic_classifier(tf_inputs)
                losses.log_loss(tf_labels, tf_predictions)
                total_loss = losses.get_total_loss()

                optimizer = gradient_descent.GradientDescentOptimizer(
                    learning_rate=1.0)

                train_op = training.create_train_op(total_loss, optimizer)

                saver = saver_lib.Saver()

                loss = training.train(
                    train_op,
                    logdir,
                    hooks=[
                        basic_session_run_hooks.StopAtStepHook(
                            num_steps=number_of_steps[i]),
                        basic_session_run_hooks.CheckpointSaverHook(
                            logdir, save_steps=50, saver=saver),
                    ],
                    save_checkpoint_secs=None,
                    save_summaries_steps=None)
                self.assertIsNotNone(loss)
                self.assertLess(loss, .015)
Exemplo n.º 11
0
    def testTrainWithNoInitAssignCanAchieveZeroLoss(self):
        with ops.Graph().as_default():
            random_seed.set_random_seed(0)
            tf_inputs = constant_op.constant(self._inputs,
                                             dtype=dtypes.float32)
            tf_labels = constant_op.constant(self._labels,
                                             dtype=dtypes.float32)

            tf_predictions = batchnorm_classifier(tf_inputs)
            losses.log_loss(tf_labels, tf_predictions)
            total_loss = losses.get_total_loss()

            optimizer = gradient_descent.GradientDescentOptimizer(
                learning_rate=1.0)

            train_op = training.create_train_op(total_loss, optimizer)

            loss = training.train(
                train_op,
                None,
                hooks=[basic_session_run_hooks.StopAtStepHook(num_steps=300)],
                save_summaries_steps=None,
                save_checkpoint_secs=None)
            self.assertLess(loss, .1)
Exemplo n.º 12
0
    def testTrainAllVarsHasLowerLossThanTrainSubsetOfVars(self):
        logdir = os.path.join(self.get_temp_dir(), 'tmp_logs3/')
        if gfile.Exists(logdir):  # For running on jenkins.
            gfile.DeleteRecursively(logdir)

        # First, train only the weights of the model.
        with ops.Graph().as_default():
            random_seed.set_random_seed(0)
            total_loss = self.ModelLoss()
            optimizer = gradient_descent.GradientDescentOptimizer(
                learning_rate=1.0)
            weights = variables_lib.get_variables_by_name('weights')

            train_op = training.create_train_op(total_loss,
                                                optimizer,
                                                variables_to_train=weights)

            saver = saver_lib.Saver()
            loss = training.train(
                train_op,
                logdir,
                hooks=[
                    basic_session_run_hooks.CheckpointSaverHook(logdir,
                                                                save_steps=200,
                                                                saver=saver),
                    basic_session_run_hooks.StopAtStepHook(num_steps=200),
                ],
                save_checkpoint_secs=None,
                save_summaries_steps=None)
            self.assertGreater(loss, .015)
            self.assertLess(loss, .05)

        # Next, train the biases of the model.
        with ops.Graph().as_default():
            random_seed.set_random_seed(1)
            total_loss = self.ModelLoss()
            optimizer = gradient_descent.GradientDescentOptimizer(
                learning_rate=1.0)
            biases = variables_lib.get_variables_by_name('biases')

            train_op = training.create_train_op(total_loss,
                                                optimizer,
                                                variables_to_train=biases)

            saver = saver_lib.Saver()
            loss = training.train(
                train_op,
                logdir,
                hooks=[
                    basic_session_run_hooks.CheckpointSaverHook(logdir,
                                                                save_steps=300,
                                                                saver=saver),
                    basic_session_run_hooks.StopAtStepHook(num_steps=300),
                ],
                save_checkpoint_secs=None,
                save_summaries_steps=None)
            self.assertGreater(loss, .015)
            self.assertLess(loss, .05)

        # Finally, train both weights and bias to get lower loss.
        with ops.Graph().as_default():
            random_seed.set_random_seed(2)
            total_loss = self.ModelLoss()
            optimizer = gradient_descent.GradientDescentOptimizer(
                learning_rate=1.0)

            train_op = training.create_train_op(total_loss, optimizer)
            saver = saver_lib.Saver()
            loss = training.train(
                train_op,
                logdir,
                hooks=[
                    basic_session_run_hooks.StopAtStepHook(num_steps=400),
                ],
                save_checkpoint_secs=None,
                save_summaries_steps=None)
            self.assertIsNotNone(loss)
            self.assertLess(loss, .015)
Exemplo n.º 13
0
def create_train_op(total_loss,
                    optimizer,
                    global_step=_USE_GLOBAL_STEP,
                    update_ops=None,
                    variables_to_train=None,
                    clip_gradient_norm=0,
                    summarize_gradients=False,
                    gate_gradients=tf_optimizer.Optimizer.GATE_OP,
                    aggregation_method=None,
                    colocate_gradients_with_ops=False,
                    gradient_multipliers=None,
                    check_numerics=True):
    """Creates an `Operation` that evaluates the gradients and returns the loss.

  Args:
    total_loss: A `Tensor` representing the total loss.
    optimizer: A tf.Optimizer to use for computing the gradients.
    global_step: A `Tensor` representing the global step variable. If left as
      `_USE_GLOBAL_STEP`, then tf.contrib.framework.global_step() is used.
    update_ops: An optional list of updates to execute. If `update_ops` is
      `None`, then the update ops are set to the contents of the
      `tf.GraphKeys.UPDATE_OPS` collection. If `update_ops` is not `None`, but
      it doesn't contain all of the update ops in `tf.GraphKeys.UPDATE_OPS`, a
      warning will be displayed.
    variables_to_train: an optional list of variables to train. If None, it will
      default to all tf.compat.v1.trainable_variables().
    clip_gradient_norm: If greater than 0 then the gradients would be clipped by
      it.
    summarize_gradients: Whether or not add summaries for each gradient.
    gate_gradients: How to gate the computation of gradients. See tf.Optimizer.
    aggregation_method: Specifies the method used to combine gradient terms.
      Valid values are defined in the class `AggregationMethod`.
    colocate_gradients_with_ops: Whether or not to try colocating the gradients
      with the ops that generated them.
    gradient_multipliers: A dictionary of either `Variables` or `Variable` op
      names to the coefficient by which the associated gradient should be
      scaled.
    check_numerics: Whether or not we apply check_numerics.

  Returns:
    A `Tensor` that when evaluated, computes the gradients and returns the total
      loss value.
  """
    def transform_grads_fn(grads):
        if gradient_multipliers:
            with ops.name_scope('multiply_grads'):
                grads = multiply_gradients(grads, gradient_multipliers)

        # Clip gradients.
        if clip_gradient_norm > 0:
            with ops.name_scope('clip_grads'):
                grads = clip_gradient_norms(grads, clip_gradient_norm)
        return grads

    return training.create_train_op(
        total_loss=total_loss,
        optimizer=optimizer,
        global_step=global_step,
        update_ops=update_ops,
        variables_to_train=variables_to_train,
        transform_grads_fn=transform_grads_fn,
        summarize_gradients=summarize_gradients,
        gate_gradients=gate_gradients,
        aggregation_method=aggregation_method,
        colocate_gradients_with_ops=colocate_gradients_with_ops,
        check_numerics=check_numerics)