Exemplo n.º 1
0
def subsample(inputs, factor, scope=None):
    """Subsamples the input along the spatial dimensions.

    Args:
      inputs: A `Tensor` of size [batch, height_in, width_in, channels].
      factor: The subsampling factor.
      scope: Optional variable_scope.

    Returns:
      output: A `Tensor` of size [batch, height_out, width_out, channels] with the
        input, either intact (if factor == 1) or subsampled (if factor > 1).
    """
    if factor == 1:
        return inputs
    else:
        return layers.max_pool2d(inputs, [1, 1], stride=factor, scope=scope)
Exemplo n.º 2
0
def resnet_v1(inputs,
              blocks,
              num_classes=None,
              is_training=True,
              global_pool=True,
              output_stride=None,
              include_root_block=True,
              reuse=None,
              scope=None):
    """Generator for v1 ResNet models.

    This function generates a family of ResNet v1 models. See the resnet_v1_*()
    methods for specific model instantiations, obtained by selecting different
    block instantiations that produce ResNets of various depths.

    Training for image classification on Imagenet is usually done with [224, 224]
    inputs, resulting in [7, 7] feature maps at the output of the last ResNet
    block for the ResNets defined in [1] that have nominal stride equal to 32.
    However, for dense prediction tasks we advise that one uses inputs with
    spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In
    this case the feature maps at the ResNet output will have spatial shape
    [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1]
    and corners exactly aligned with the input image corners, which greatly
    facilitates alignment of the features to the image. Using as input [225, 225]
    images results in [8, 8] feature maps at the output of the last ResNet block.

    For dense prediction tasks, the ResNet needs to run in fully-convolutional
    (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all
    have nominal stride equal to 32 and a good choice in FCN mode is to use
    output_stride=16 in order to increase the density of the computed features at
    small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915.

    Args:
      inputs: A tensor of size [batch, height_in, width_in, channels].
      blocks: A list of length equal to the number of ResNet blocks. Each element
        is a resnet_utils.Block object describing the units in the block.
      num_classes: Number of predicted classes for classification tasks. If None
        we return the features before the logit layer.
      is_training: whether batch_norm layers are in training mode.
      global_pool: If True, we perform global average pooling before computing the
        logits. Set to True for image classification, False for dense prediction.
      output_stride: If None, then the output will be computed at the nominal
        network stride. If output_stride is not None, it specifies the requested
        ratio of input to output spatial resolution.
      include_root_block: If True, include the initial convolution followed by
        max-pooling, if False excludes it.
      reuse: whether or not the network and its variables should be reused. To be
        able to reuse 'scope' must be given.
      scope: Optional variable_scope.

    Returns:
      net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
        If global_pool is False, then height_out and width_out are reduced by a
        factor of output_stride compared to the respective height_in and width_in,
        else both height_out and width_out equal one. If num_classes is None, then
        net is the output of the last ResNet block, potentially after global
        average pooling. If num_classes is not None, net contains the pre-softmax
        activations.
      end_points: A dictionary from components of the network to the corresponding
        activation.

    Raises:
      ValueError: If the target output_stride is not valid.
    """
    with variable_scope.variable_scope(scope,
                                       'resnet_v1', [inputs],
                                       reuse=reuse) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        with arg_scope(
            [layers.conv2d, bottleneck, resnet_utils.stack_blocks_dense],
                outputs_collections=end_points_collection):
            with arg_scope([layers.batch_norm], is_training=is_training):
                net = inputs
                if include_root_block:
                    if output_stride is not None:
                        if output_stride % 4 != 0:
                            raise ValueError(
                                'The output_stride needs to be a multiple of 4.'
                            )
                        output_stride /= 4
                    net = resnet_utils.conv2d_same(net,
                                                   64,
                                                   7,
                                                   stride=2,
                                                   scope='conv1')
                    net = layers_lib.max_pool2d(net, [3, 3],
                                                stride=2,
                                                scope='pool1')
                net = resnet_utils.stack_blocks_dense(net, blocks,
                                                      output_stride)
                if global_pool:
                    # Global average pooling.
                    net = math_ops.reduce_mean(net, [1, 2],
                                               name='pool5',
                                               keepdims=True)
                if num_classes is not None:
                    net = layers.conv2d(net,
                                        num_classes, [1, 1],
                                        activation_fn=None,
                                        normalizer_fn=None,
                                        scope='logits')
                # Convert end_points_collection into a dictionary of end_points.
                end_points = utils.convert_collection_to_dict(
                    end_points_collection)
                if num_classes is not None:
                    end_points['predictions'] = layers_lib.softmax(
                        net, scope='predictions')
                return net, end_points
Exemplo n.º 3
0
def alexnet_v2(inputs,
               num_classes=1000,
               is_training=True,
               dropout_keep_prob=0.5,
               spatial_squeeze=True,
               scope='alexnet_v2'):
    """AlexNet version 2.

    Described in: http://arxiv.org/pdf/1404.5997v2.pdf
    Parameters from:
    github.com/akrizhevsky/cuda-convnet2/blob/master/layers/
    layers-imagenet-1gpu.cfg

    Note: All the fully_connected layers have been transformed to conv2d layers.
          To use in classification mode, resize input to 224x224. To use in fully
          convolutional mode, set spatial_squeeze to false.
          The LRN layers have been removed and change the initializers from
          random_normal_initializer to xavier_initializer.

    Args:
      inputs: a tensor of size [batch_size, height, width, channels].
      num_classes: number of predicted classes.
      is_training: whether or not the model is being trained.
      dropout_keep_prob: the probability that activations are kept in the dropout
        layers during training.
      spatial_squeeze: whether or not should squeeze the spatial dimensions of the
        outputs. Useful to remove unnecessary dimensions for classification.
      scope: Optional scope for the variables.

    Returns:
      the last op containing the log predictions and end_points dict.
    """
    with variable_scope.variable_scope(scope, 'alexnet_v2', [inputs]) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        # Collect outputs for conv2d, fully_connected and max_pool2d.
        with arg_scope(
            [layers.conv2d, layers_lib.fully_connected, layers_lib.max_pool2d],
                outputs_collections=[end_points_collection]):
            net = layers.conv2d(inputs,
                                64, [11, 11],
                                4,
                                padding='VALID',
                                scope='conv1')
            net = layers_lib.max_pool2d(net, [3, 3], 2, scope='pool1')
            net = layers.conv2d(net, 192, [5, 5], scope='conv2')
            net = layers_lib.max_pool2d(net, [3, 3], 2, scope='pool2')
            net = layers.conv2d(net, 384, [3, 3], scope='conv3')
            net = layers.conv2d(net, 384, [3, 3], scope='conv4')
            net = layers.conv2d(net, 256, [3, 3], scope='conv5')
            net = layers_lib.max_pool2d(net, [3, 3], 2, scope='pool5')

            # Use conv2d instead of fully_connected layers.
            with arg_scope(
                [layers.conv2d],
                    weights_initializer=trunc_normal(0.005),
                    biases_initializer=init_ops.constant_initializer(0.1)):
                net = layers.conv2d(net,
                                    4096, [5, 5],
                                    padding='VALID',
                                    scope='fc6')
                net = layers_lib.dropout(net,
                                         dropout_keep_prob,
                                         is_training=is_training,
                                         scope='dropout6')
                net = layers.conv2d(net, 4096, [1, 1], scope='fc7')
                net = layers_lib.dropout(net,
                                         dropout_keep_prob,
                                         is_training=is_training,
                                         scope='dropout7')
                net = layers.conv2d(
                    net,
                    num_classes, [1, 1],
                    activation_fn=None,
                    normalizer_fn=None,
                    biases_initializer=init_ops.zeros_initializer(),
                    scope='fc8')

            # Convert end_points_collection into a end_point dict.
            end_points = utils.convert_collection_to_dict(
                end_points_collection)
            if spatial_squeeze:
                net = array_ops.squeeze(net, [1, 2], name='fc8/squeezed')
                end_points[sc.name + '/fc8'] = net
            return net, end_points
Exemplo n.º 4
0
def inception_v1_base(inputs, final_endpoint='Mixed_5c', scope='InceptionV1'):
    """Defines the Inception V1 base architecture.

    This architecture is defined in:
      Going deeper with convolutions
      Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
      Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich.
      http://arxiv.org/pdf/1409.4842v1.pdf.

    Args:
      inputs: a tensor of size [batch_size, height, width, channels].
      final_endpoint: specifies the endpoint to construct the network up to. It
        can be one of ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
        'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c',
        'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e',
        'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b', 'Mixed_5c']
      scope: Optional variable_scope.

    Returns:
      A dictionary from components of the network to the corresponding activation.

    Raises:
      ValueError: if final_endpoint is not set to one of the predefined values.
    """
    end_points = {}
    with variable_scope.variable_scope(scope, 'InceptionV1', [inputs]):
        with arg_scope([layers.conv2d, layers_lib.fully_connected],
                       weights_initializer=trunc_normal(0.01)):
            with arg_scope([layers.conv2d, layers_lib.max_pool2d],
                           stride=1,
                           padding='SAME'):
                end_point = 'Conv2d_1a_7x7'
                net = layers.conv2d(inputs,
                                    64, [7, 7],
                                    stride=2,
                                    scope=end_point)
                end_points[end_point] = net
                if final_endpoint == end_point:
                    return net, end_points
                end_point = 'MaxPool_2a_3x3'
                net = layers_lib.max_pool2d(net, [3, 3],
                                            stride=2,
                                            scope=end_point)
                end_points[end_point] = net
                if final_endpoint == end_point:
                    return net, end_points
                end_point = 'Conv2d_2b_1x1'
                net = layers.conv2d(net, 64, [1, 1], scope=end_point)
                end_points[end_point] = net
                if final_endpoint == end_point:
                    return net, end_points
                end_point = 'Conv2d_2c_3x3'
                net = layers.conv2d(net, 192, [3, 3], scope=end_point)
                end_points[end_point] = net
                if final_endpoint == end_point:
                    return net, end_points
                end_point = 'MaxPool_3a_3x3'
                net = layers_lib.max_pool2d(net, [3, 3],
                                            stride=2,
                                            scope=end_point)
                end_points[end_point] = net
                if final_endpoint == end_point:
                    return net, end_points

                end_point = 'Mixed_3b'
                with variable_scope.variable_scope(end_point):
                    with variable_scope.variable_scope('Branch_0'):
                        branch_0 = layers.conv2d(net,
                                                 64, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                    with variable_scope.variable_scope('Branch_1'):
                        branch_1 = layers.conv2d(net,
                                                 96, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                        branch_1 = layers.conv2d(branch_1,
                                                 128, [3, 3],
                                                 scope='Conv2d_0b_3x3')
                    with variable_scope.variable_scope('Branch_2'):
                        branch_2 = layers.conv2d(net,
                                                 16, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                        branch_2 = layers.conv2d(branch_2,
                                                 32, [3, 3],
                                                 scope='Conv2d_0b_3x3')
                    with variable_scope.variable_scope('Branch_3'):
                        branch_3 = layers_lib.max_pool2d(
                            net, [3, 3], scope='MaxPool_0a_3x3')
                        branch_3 = layers.conv2d(branch_3,
                                                 32, [1, 1],
                                                 scope='Conv2d_0b_1x1')
                    net = array_ops.concat(
                        [branch_0, branch_1, branch_2, branch_3], 3)
                end_points[end_point] = net
                if final_endpoint == end_point:
                    return net, end_points

                end_point = 'Mixed_3c'
                with variable_scope.variable_scope(end_point):
                    with variable_scope.variable_scope('Branch_0'):
                        branch_0 = layers.conv2d(net,
                                                 128, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                    with variable_scope.variable_scope('Branch_1'):
                        branch_1 = layers.conv2d(net,
                                                 128, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                        branch_1 = layers.conv2d(branch_1,
                                                 192, [3, 3],
                                                 scope='Conv2d_0b_3x3')
                    with variable_scope.variable_scope('Branch_2'):
                        branch_2 = layers.conv2d(net,
                                                 32, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                        branch_2 = layers.conv2d(branch_2,
                                                 96, [3, 3],
                                                 scope='Conv2d_0b_3x3')
                    with variable_scope.variable_scope('Branch_3'):
                        branch_3 = layers_lib.max_pool2d(
                            net, [3, 3], scope='MaxPool_0a_3x3')
                        branch_3 = layers.conv2d(branch_3,
                                                 64, [1, 1],
                                                 scope='Conv2d_0b_1x1')
                    net = array_ops.concat(
                        [branch_0, branch_1, branch_2, branch_3], 3)
                end_points[end_point] = net
                if final_endpoint == end_point:
                    return net, end_points

                end_point = 'MaxPool_4a_3x3'
                net = layers_lib.max_pool2d(net, [3, 3],
                                            stride=2,
                                            scope=end_point)
                end_points[end_point] = net
                if final_endpoint == end_point:
                    return net, end_points

                end_point = 'Mixed_4b'
                with variable_scope.variable_scope(end_point):
                    with variable_scope.variable_scope('Branch_0'):
                        branch_0 = layers.conv2d(net,
                                                 192, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                    with variable_scope.variable_scope('Branch_1'):
                        branch_1 = layers.conv2d(net,
                                                 96, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                        branch_1 = layers.conv2d(branch_1,
                                                 208, [3, 3],
                                                 scope='Conv2d_0b_3x3')
                    with variable_scope.variable_scope('Branch_2'):
                        branch_2 = layers.conv2d(net,
                                                 16, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                        branch_2 = layers.conv2d(branch_2,
                                                 48, [3, 3],
                                                 scope='Conv2d_0b_3x3')
                    with variable_scope.variable_scope('Branch_3'):
                        branch_3 = layers_lib.max_pool2d(
                            net, [3, 3], scope='MaxPool_0a_3x3')
                        branch_3 = layers.conv2d(branch_3,
                                                 64, [1, 1],
                                                 scope='Conv2d_0b_1x1')
                    net = array_ops.concat(
                        [branch_0, branch_1, branch_2, branch_3], 3)
                end_points[end_point] = net
                if final_endpoint == end_point:
                    return net, end_points

                end_point = 'Mixed_4c'
                with variable_scope.variable_scope(end_point):
                    with variable_scope.variable_scope('Branch_0'):
                        branch_0 = layers.conv2d(net,
                                                 160, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                    with variable_scope.variable_scope('Branch_1'):
                        branch_1 = layers.conv2d(net,
                                                 112, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                        branch_1 = layers.conv2d(branch_1,
                                                 224, [3, 3],
                                                 scope='Conv2d_0b_3x3')
                    with variable_scope.variable_scope('Branch_2'):
                        branch_2 = layers.conv2d(net,
                                                 24, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                        branch_2 = layers.conv2d(branch_2,
                                                 64, [3, 3],
                                                 scope='Conv2d_0b_3x3')
                    with variable_scope.variable_scope('Branch_3'):
                        branch_3 = layers_lib.max_pool2d(
                            net, [3, 3], scope='MaxPool_0a_3x3')
                        branch_3 = layers.conv2d(branch_3,
                                                 64, [1, 1],
                                                 scope='Conv2d_0b_1x1')
                    net = array_ops.concat(
                        [branch_0, branch_1, branch_2, branch_3], 3)
                end_points[end_point] = net
                if final_endpoint == end_point:
                    return net, end_points

                end_point = 'Mixed_4d'
                with variable_scope.variable_scope(end_point):
                    with variable_scope.variable_scope('Branch_0'):
                        branch_0 = layers.conv2d(net,
                                                 128, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                    with variable_scope.variable_scope('Branch_1'):
                        branch_1 = layers.conv2d(net,
                                                 128, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                        branch_1 = layers.conv2d(branch_1,
                                                 256, [3, 3],
                                                 scope='Conv2d_0b_3x3')
                    with variable_scope.variable_scope('Branch_2'):
                        branch_2 = layers.conv2d(net,
                                                 24, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                        branch_2 = layers.conv2d(branch_2,
                                                 64, [3, 3],
                                                 scope='Conv2d_0b_3x3')
                    with variable_scope.variable_scope('Branch_3'):
                        branch_3 = layers_lib.max_pool2d(
                            net, [3, 3], scope='MaxPool_0a_3x3')
                        branch_3 = layers.conv2d(branch_3,
                                                 64, [1, 1],
                                                 scope='Conv2d_0b_1x1')
                    net = array_ops.concat(
                        [branch_0, branch_1, branch_2, branch_3], 3)
                end_points[end_point] = net
                if final_endpoint == end_point:
                    return net, end_points

                end_point = 'Mixed_4e'
                with variable_scope.variable_scope(end_point):
                    with variable_scope.variable_scope('Branch_0'):
                        branch_0 = layers.conv2d(net,
                                                 112, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                    with variable_scope.variable_scope('Branch_1'):
                        branch_1 = layers.conv2d(net,
                                                 144, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                        branch_1 = layers.conv2d(branch_1,
                                                 288, [3, 3],
                                                 scope='Conv2d_0b_3x3')
                    with variable_scope.variable_scope('Branch_2'):
                        branch_2 = layers.conv2d(net,
                                                 32, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                        branch_2 = layers.conv2d(branch_2,
                                                 64, [3, 3],
                                                 scope='Conv2d_0b_3x3')
                    with variable_scope.variable_scope('Branch_3'):
                        branch_3 = layers_lib.max_pool2d(
                            net, [3, 3], scope='MaxPool_0a_3x3')
                        branch_3 = layers.conv2d(branch_3,
                                                 64, [1, 1],
                                                 scope='Conv2d_0b_1x1')
                    net = array_ops.concat(
                        [branch_0, branch_1, branch_2, branch_3], 3)
                end_points[end_point] = net
                if final_endpoint == end_point:
                    return net, end_points

                end_point = 'Mixed_4f'
                with variable_scope.variable_scope(end_point):
                    with variable_scope.variable_scope('Branch_0'):
                        branch_0 = layers.conv2d(net,
                                                 256, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                    with variable_scope.variable_scope('Branch_1'):
                        branch_1 = layers.conv2d(net,
                                                 160, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                        branch_1 = layers.conv2d(branch_1,
                                                 320, [3, 3],
                                                 scope='Conv2d_0b_3x3')
                    with variable_scope.variable_scope('Branch_2'):
                        branch_2 = layers.conv2d(net,
                                                 32, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                        branch_2 = layers.conv2d(branch_2,
                                                 128, [3, 3],
                                                 scope='Conv2d_0b_3x3')
                    with variable_scope.variable_scope('Branch_3'):
                        branch_3 = layers_lib.max_pool2d(
                            net, [3, 3], scope='MaxPool_0a_3x3')
                        branch_3 = layers.conv2d(branch_3,
                                                 128, [1, 1],
                                                 scope='Conv2d_0b_1x1')
                    net = array_ops.concat(
                        [branch_0, branch_1, branch_2, branch_3], 3)
                end_points[end_point] = net
                if final_endpoint == end_point:
                    return net, end_points

                end_point = 'MaxPool_5a_2x2'
                net = layers_lib.max_pool2d(net, [2, 2],
                                            stride=2,
                                            scope=end_point)
                end_points[end_point] = net
                if final_endpoint == end_point:
                    return net, end_points

                end_point = 'Mixed_5b'
                with variable_scope.variable_scope(end_point):
                    with variable_scope.variable_scope('Branch_0'):
                        branch_0 = layers.conv2d(net,
                                                 256, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                    with variable_scope.variable_scope('Branch_1'):
                        branch_1 = layers.conv2d(net,
                                                 160, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                        branch_1 = layers.conv2d(branch_1,
                                                 320, [3, 3],
                                                 scope='Conv2d_0b_3x3')
                    with variable_scope.variable_scope('Branch_2'):
                        branch_2 = layers.conv2d(net,
                                                 32, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                        branch_2 = layers.conv2d(branch_2,
                                                 128, [3, 3],
                                                 scope='Conv2d_0a_3x3')
                    with variable_scope.variable_scope('Branch_3'):
                        branch_3 = layers_lib.max_pool2d(
                            net, [3, 3], scope='MaxPool_0a_3x3')
                        branch_3 = layers.conv2d(branch_3,
                                                 128, [1, 1],
                                                 scope='Conv2d_0b_1x1')
                    net = array_ops.concat(
                        [branch_0, branch_1, branch_2, branch_3], 3)
                end_points[end_point] = net
                if final_endpoint == end_point:
                    return net, end_points

                end_point = 'Mixed_5c'
                with variable_scope.variable_scope(end_point):
                    with variable_scope.variable_scope('Branch_0'):
                        branch_0 = layers.conv2d(net,
                                                 384, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                    with variable_scope.variable_scope('Branch_1'):
                        branch_1 = layers.conv2d(net,
                                                 192, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                        branch_1 = layers.conv2d(branch_1,
                                                 384, [3, 3],
                                                 scope='Conv2d_0b_3x3')
                    with variable_scope.variable_scope('Branch_2'):
                        branch_2 = layers.conv2d(net,
                                                 48, [1, 1],
                                                 scope='Conv2d_0a_1x1')
                        branch_2 = layers.conv2d(branch_2,
                                                 128, [3, 3],
                                                 scope='Conv2d_0b_3x3')
                    with variable_scope.variable_scope('Branch_3'):
                        branch_3 = layers_lib.max_pool2d(
                            net, [3, 3], scope='MaxPool_0a_3x3')
                        branch_3 = layers.conv2d(branch_3,
                                                 128, [1, 1],
                                                 scope='Conv2d_0b_1x1')
                    net = array_ops.concat(
                        [branch_0, branch_1, branch_2, branch_3], 3)
                end_points[end_point] = net
                if final_endpoint == end_point:
                    return net, end_points
        raise ValueError('Unknown final endpoint %s' % final_endpoint)
Exemplo n.º 5
0
def vgg_a(inputs,
          num_classes=1000,
          is_training=True,
          dropout_keep_prob=0.5,
          spatial_squeeze=True,
          scope='vgg_a'):
    """Oxford Net VGG 11-Layers version A Example.

    Note: All the fully_connected layers have been transformed to conv2d layers.
          To use in classification mode, resize input to 224x224.

    Args:
      inputs: a tensor of size [batch_size, height, width, channels].
      num_classes: number of predicted classes.
      is_training: whether or not the model is being trained.
      dropout_keep_prob: the probability that activations are kept in the dropout
        layers during training.
      spatial_squeeze: whether or not should squeeze the spatial dimensions of the
        outputs. Useful to remove unnecessary dimensions for classification.
      scope: Optional scope for the variables.

    Returns:
      the last op containing the log predictions and end_points dict.
    """
    with variable_scope.variable_scope(scope, 'vgg_a', [inputs]) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        # Collect outputs for conv2d, fully_connected and max_pool2d.
        with arg_scope(
            [layers.conv2d, layers_lib.max_pool2d],
                outputs_collections=end_points_collection):
            net = layers_lib.repeat(
                inputs, 1, layers.conv2d, 64, [3, 3], scope='conv1')
            net = layers_lib.max_pool2d(net, [2, 2], scope='pool1')
            net = layers_lib.repeat(net, 1, layers.conv2d, 128, [
                                    3, 3], scope='conv2')
            net = layers_lib.max_pool2d(net, [2, 2], scope='pool2')
            net = layers_lib.repeat(net, 2, layers.conv2d, 256, [
                                    3, 3], scope='conv3')
            net = layers_lib.max_pool2d(net, [2, 2], scope='pool3')
            net = layers_lib.repeat(net, 2, layers.conv2d, 512, [
                                    3, 3], scope='conv4')
            net = layers_lib.max_pool2d(net, [2, 2], scope='pool4')
            net = layers_lib.repeat(net, 2, layers.conv2d, 512, [
                                    3, 3], scope='conv5')
            net = layers_lib.max_pool2d(net, [2, 2], scope='pool5')
            # Use conv2d instead of fully_connected layers.
            net = layers.conv2d(
                net, 4096, [7, 7], padding='VALID', scope='fc6')
            net = layers_lib.dropout(
                net, dropout_keep_prob, is_training=is_training, scope='dropout6')
            net = layers.conv2d(net, 4096, [1, 1], scope='fc7')
            net = layers_lib.dropout(
                net, dropout_keep_prob, is_training=is_training, scope='dropout7')
            net = layers.conv2d(
                net,
                num_classes, [1, 1],
                activation_fn=None,
                normalizer_fn=None,
                scope='fc8')
            # Convert end_points_collection into a end_point dict.
            end_points = utils.convert_collection_to_dict(
                end_points_collection)
            if spatial_squeeze:
                net = array_ops.squeeze(net, [1, 2], name='fc8/squeezed')
                end_points[sc.name + '/fc8'] = net
            return net, end_points
Exemplo n.º 6
0
def inception_v2_base(inputs,
                      final_endpoint='Mixed_5c',
                      min_depth=16,
                      depth_multiplier=1.0,
                      scope=None):
    """Inception v2 (6a2).

    Constructs an Inception v2 network from inputs to the given final endpoint.
    This method can construct the network up to the layer inception(5b) as
    described in http://arxiv.org/abs/1502.03167.

    Args:
      inputs: a tensor of shape [batch_size, height, width, channels].
      final_endpoint: specifies the endpoint to construct the network up to. It
        can be one of ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
        'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c', 'Mixed_4a',
        'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_5a', 'Mixed_5b',
        'Mixed_5c'].
      min_depth: Minimum depth value (number of channels) for all convolution ops.
        Enforced when depth_multiplier < 1, and not an active constraint when
        depth_multiplier >= 1.
      depth_multiplier: Float multiplier for the depth (number of channels)
        for all convolution ops. The value must be greater than zero. Typical
        usage will be to set this value in (0, 1) to reduce the number of
        parameters or computation cost of the model.
      scope: Optional variable_scope.

    Returns:
      tensor_out: output tensor corresponding to the final_endpoint.
      end_points: a set of activations for external use, for example summaries or
                  losses.

    Raises:
      ValueError: if final_endpoint is not set to one of the predefined values,
                  or depth_multiplier <= 0
    """

    # end_points will collect relevant activations for external use, for example
    # summaries or losses.
    end_points = {}

    # Used to find thinned depths for each layer.
    if depth_multiplier <= 0:
        raise ValueError('depth_multiplier is not greater than zero.')

    def depth(d): return max(int(d * depth_multiplier), min_depth)

    with variable_scope.variable_scope(scope, 'InceptionV2', [inputs]):
        with arg_scope(
            [
                layers.conv2d, layers_lib.max_pool2d, layers_lib.avg_pool2d,
                layers.separable_conv2d
            ],
            stride=1,
                padding='SAME'):

            # Note that sizes in the comments below assume an input spatial size of
            # 224x224, however, the inputs can be of any size greater 32x32.

            # 224 x 224 x 3
            end_point = 'Conv2d_1a_7x7'
            # depthwise_multiplier here is different from depth_multiplier.
            # depthwise_multiplier determines the output channels of the initial
            # depthwise conv (see docs for tf.nn.separable_conv2d), while
            # depth_multiplier controls the # channels of the subsequent 1x1
            # convolution. Must have
            #   in_channels * depthwise_multipler <= out_channels
            # so that the separable convolution is not overparameterized.
            depthwise_multiplier = min(int(depth(64) / 3), 8)
            net = layers.separable_conv2d(
                inputs,
                depth(64), [7, 7],
                depth_multiplier=depthwise_multiplier,
                stride=2,
                weights_initializer=trunc_normal(1.0),
                scope=end_point)
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points
            # 112 x 112 x 64
            end_point = 'MaxPool_2a_3x3'
            net = layers_lib.max_pool2d(net, [3, 3], scope=end_point, stride=2)
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points
            # 56 x 56 x 64
            end_point = 'Conv2d_2b_1x1'
            net = layers.conv2d(
                net,
                depth(64), [1, 1],
                scope=end_point,
                weights_initializer=trunc_normal(0.1))
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points
            # 56 x 56 x 64
            end_point = 'Conv2d_2c_3x3'
            net = layers.conv2d(net, depth(192), [3, 3], scope=end_point)
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points
            # 56 x 56 x 192
            end_point = 'MaxPool_3a_3x3'
            net = layers_lib.max_pool2d(net, [3, 3], scope=end_point, stride=2)
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points
            # 28 x 28 x 192
            # Inception module.
            end_point = 'Mixed_3b'
            with variable_scope.variable_scope(end_point):
                with variable_scope.variable_scope('Branch_0'):
                    branch_0 = layers.conv2d(
                        net, depth(64), [1, 1], scope='Conv2d_0a_1x1')
                with variable_scope.variable_scope('Branch_1'):
                    branch_1 = layers.conv2d(
                        net,
                        depth(64), [1, 1],
                        weights_initializer=trunc_normal(0.09),
                        scope='Conv2d_0a_1x1')
                    branch_1 = layers.conv2d(
                        branch_1, depth(64), [3, 3], scope='Conv2d_0b_3x3')
                with variable_scope.variable_scope('Branch_2'):
                    branch_2 = layers.conv2d(
                        net,
                        depth(64), [1, 1],
                        weights_initializer=trunc_normal(0.09),
                        scope='Conv2d_0a_1x1')
                    branch_2 = layers.conv2d(
                        branch_2, depth(96), [3, 3], scope='Conv2d_0b_3x3')
                    branch_2 = layers.conv2d(
                        branch_2, depth(96), [3, 3], scope='Conv2d_0c_3x3')
                with variable_scope.variable_scope('Branch_3'):
                    branch_3 = layers_lib.avg_pool2d(
                        net, [3, 3], scope='AvgPool_0a_3x3')
                    branch_3 = layers.conv2d(
                        branch_3,
                        depth(32), [1, 1],
                        weights_initializer=trunc_normal(0.1),
                        scope='Conv2d_0b_1x1')
                net = array_ops.concat(
                    [branch_0, branch_1, branch_2, branch_3], 3)
                end_points[end_point] = net
                if end_point == final_endpoint:
                    return net, end_points
            # 28 x 28 x 256
            end_point = 'Mixed_3c'
            with variable_scope.variable_scope(end_point):
                with variable_scope.variable_scope('Branch_0'):
                    branch_0 = layers.conv2d(
                        net, depth(64), [1, 1], scope='Conv2d_0a_1x1')
                with variable_scope.variable_scope('Branch_1'):
                    branch_1 = layers.conv2d(
                        net,
                        depth(64), [1, 1],
                        weights_initializer=trunc_normal(0.09),
                        scope='Conv2d_0a_1x1')
                    branch_1 = layers.conv2d(
                        branch_1, depth(96), [3, 3], scope='Conv2d_0b_3x3')
                with variable_scope.variable_scope('Branch_2'):
                    branch_2 = layers.conv2d(
                        net,
                        depth(64), [1, 1],
                        weights_initializer=trunc_normal(0.09),
                        scope='Conv2d_0a_1x1')
                    branch_2 = layers.conv2d(
                        branch_2, depth(96), [3, 3], scope='Conv2d_0b_3x3')
                    branch_2 = layers.conv2d(
                        branch_2, depth(96), [3, 3], scope='Conv2d_0c_3x3')
                with variable_scope.variable_scope('Branch_3'):
                    branch_3 = layers_lib.avg_pool2d(
                        net, [3, 3], scope='AvgPool_0a_3x3')
                    branch_3 = layers.conv2d(
                        branch_3,
                        depth(64), [1, 1],
                        weights_initializer=trunc_normal(0.1),
                        scope='Conv2d_0b_1x1')
                net = array_ops.concat(
                    [branch_0, branch_1, branch_2, branch_3], 3)
                end_points[end_point] = net
                if end_point == final_endpoint:
                    return net, end_points
            # 28 x 28 x 320
            end_point = 'Mixed_4a'
            with variable_scope.variable_scope(end_point):
                with variable_scope.variable_scope('Branch_0'):
                    branch_0 = layers.conv2d(
                        net,
                        depth(128), [1, 1],
                        weights_initializer=trunc_normal(0.09),
                        scope='Conv2d_0a_1x1')
                    branch_0 = layers.conv2d(
                        branch_0, depth(160), [3, 3], stride=2, scope='Conv2d_1a_3x3')
                with variable_scope.variable_scope('Branch_1'):
                    branch_1 = layers.conv2d(
                        net,
                        depth(64), [1, 1],
                        weights_initializer=trunc_normal(0.09),
                        scope='Conv2d_0a_1x1')
                    branch_1 = layers.conv2d(
                        branch_1, depth(96), [3, 3], scope='Conv2d_0b_3x3')
                    branch_1 = layers.conv2d(
                        branch_1, depth(96), [3, 3], stride=2, scope='Conv2d_1a_3x3')
                with variable_scope.variable_scope('Branch_2'):
                    branch_2 = layers_lib.max_pool2d(
                        net, [3, 3], stride=2, scope='MaxPool_1a_3x3')
                net = array_ops.concat([branch_0, branch_1, branch_2], 3)
                end_points[end_point] = net
                if end_point == final_endpoint:
                    return net, end_points
            # 14 x 14 x 576
            end_point = 'Mixed_4b'
            with variable_scope.variable_scope(end_point):
                with variable_scope.variable_scope('Branch_0'):
                    branch_0 = layers.conv2d(
                        net, depth(224), [1, 1], scope='Conv2d_0a_1x1')
                with variable_scope.variable_scope('Branch_1'):
                    branch_1 = layers.conv2d(
                        net,
                        depth(64), [1, 1],
                        weights_initializer=trunc_normal(0.09),
                        scope='Conv2d_0a_1x1')
                    branch_1 = layers.conv2d(
                        branch_1, depth(96), [3, 3], scope='Conv2d_0b_3x3')
                with variable_scope.variable_scope('Branch_2'):
                    branch_2 = layers.conv2d(
                        net,
                        depth(96), [1, 1],
                        weights_initializer=trunc_normal(0.09),
                        scope='Conv2d_0a_1x1')
                    branch_2 = layers.conv2d(
                        branch_2, depth(128), [3, 3], scope='Conv2d_0b_3x3')
                    branch_2 = layers.conv2d(
                        branch_2, depth(128), [3, 3], scope='Conv2d_0c_3x3')
                with variable_scope.variable_scope('Branch_3'):
                    branch_3 = layers_lib.avg_pool2d(
                        net, [3, 3], scope='AvgPool_0a_3x3')
                    branch_3 = layers.conv2d(
                        branch_3,
                        depth(128), [1, 1],
                        weights_initializer=trunc_normal(0.1),
                        scope='Conv2d_0b_1x1')
                net = array_ops.concat(
                    [branch_0, branch_1, branch_2, branch_3], 3)
                end_points[end_point] = net
                if end_point == final_endpoint:
                    return net, end_points
            # 14 x 14 x 576
            end_point = 'Mixed_4c'
            with variable_scope.variable_scope(end_point):
                with variable_scope.variable_scope('Branch_0'):
                    branch_0 = layers.conv2d(
                        net, depth(192), [1, 1], scope='Conv2d_0a_1x1')
                with variable_scope.variable_scope('Branch_1'):
                    branch_1 = layers.conv2d(
                        net,
                        depth(96), [1, 1],
                        weights_initializer=trunc_normal(0.09),
                        scope='Conv2d_0a_1x1')
                    branch_1 = layers.conv2d(
                        branch_1, depth(128), [3, 3], scope='Conv2d_0b_3x3')
                with variable_scope.variable_scope('Branch_2'):
                    branch_2 = layers.conv2d(
                        net,
                        depth(96), [1, 1],
                        weights_initializer=trunc_normal(0.09),
                        scope='Conv2d_0a_1x1')
                    branch_2 = layers.conv2d(
                        branch_2, depth(128), [3, 3], scope='Conv2d_0b_3x3')
                    branch_2 = layers.conv2d(
                        branch_2, depth(128), [3, 3], scope='Conv2d_0c_3x3')
                with variable_scope.variable_scope('Branch_3'):
                    branch_3 = layers_lib.avg_pool2d(
                        net, [3, 3], scope='AvgPool_0a_3x3')
                    branch_3 = layers.conv2d(
                        branch_3,
                        depth(128), [1, 1],
                        weights_initializer=trunc_normal(0.1),
                        scope='Conv2d_0b_1x1')
                net = array_ops.concat(
                    [branch_0, branch_1, branch_2, branch_3], 3)
                end_points[end_point] = net
                if end_point == final_endpoint:
                    return net, end_points
            # 14 x 14 x 576
            end_point = 'Mixed_4d'
            with variable_scope.variable_scope(end_point):
                with variable_scope.variable_scope('Branch_0'):
                    branch_0 = layers.conv2d(
                        net, depth(160), [1, 1], scope='Conv2d_0a_1x1')
                with variable_scope.variable_scope('Branch_1'):
                    branch_1 = layers.conv2d(
                        net,
                        depth(128), [1, 1],
                        weights_initializer=trunc_normal(0.09),
                        scope='Conv2d_0a_1x1')
                    branch_1 = layers.conv2d(
                        branch_1, depth(160), [3, 3], scope='Conv2d_0b_3x3')
                with variable_scope.variable_scope('Branch_2'):
                    branch_2 = layers.conv2d(
                        net,
                        depth(128), [1, 1],
                        weights_initializer=trunc_normal(0.09),
                        scope='Conv2d_0a_1x1')
                    branch_2 = layers.conv2d(
                        branch_2, depth(160), [3, 3], scope='Conv2d_0b_3x3')
                    branch_2 = layers.conv2d(
                        branch_2, depth(160), [3, 3], scope='Conv2d_0c_3x3')
                with variable_scope.variable_scope('Branch_3'):
                    branch_3 = layers_lib.avg_pool2d(
                        net, [3, 3], scope='AvgPool_0a_3x3')
                    branch_3 = layers.conv2d(
                        branch_3,
                        depth(96), [1, 1],
                        weights_initializer=trunc_normal(0.1),
                        scope='Conv2d_0b_1x1')
                net = array_ops.concat(
                    [branch_0, branch_1, branch_2, branch_3], 3)
                end_points[end_point] = net
                if end_point == final_endpoint:
                    return net, end_points

            # 14 x 14 x 576
            end_point = 'Mixed_4e'
            with variable_scope.variable_scope(end_point):
                with variable_scope.variable_scope('Branch_0'):
                    branch_0 = layers.conv2d(
                        net, depth(96), [1, 1], scope='Conv2d_0a_1x1')
                with variable_scope.variable_scope('Branch_1'):
                    branch_1 = layers.conv2d(
                        net,
                        depth(128), [1, 1],
                        weights_initializer=trunc_normal(0.09),
                        scope='Conv2d_0a_1x1')
                    branch_1 = layers.conv2d(
                        branch_1, depth(192), [3, 3], scope='Conv2d_0b_3x3')
                with variable_scope.variable_scope('Branch_2'):
                    branch_2 = layers.conv2d(
                        net,
                        depth(160), [1, 1],
                        weights_initializer=trunc_normal(0.09),
                        scope='Conv2d_0a_1x1')
                    branch_2 = layers.conv2d(
                        branch_2, depth(192), [3, 3], scope='Conv2d_0b_3x3')
                    branch_2 = layers.conv2d(
                        branch_2, depth(192), [3, 3], scope='Conv2d_0c_3x3')
                with variable_scope.variable_scope('Branch_3'):
                    branch_3 = layers_lib.avg_pool2d(
                        net, [3, 3], scope='AvgPool_0a_3x3')
                    branch_3 = layers.conv2d(
                        branch_3,
                        depth(96), [1, 1],
                        weights_initializer=trunc_normal(0.1),
                        scope='Conv2d_0b_1x1')
                net = array_ops.concat(
                    [branch_0, branch_1, branch_2, branch_3], 3)
                end_points[end_point] = net
                if end_point == final_endpoint:
                    return net, end_points
            # 14 x 14 x 576
            end_point = 'Mixed_5a'
            with variable_scope.variable_scope(end_point):
                with variable_scope.variable_scope('Branch_0'):
                    branch_0 = layers.conv2d(
                        net,
                        depth(128), [1, 1],
                        weights_initializer=trunc_normal(0.09),
                        scope='Conv2d_0a_1x1')
                    branch_0 = layers.conv2d(
                        branch_0, depth(192), [3, 3], stride=2, scope='Conv2d_1a_3x3')
                with variable_scope.variable_scope('Branch_1'):
                    branch_1 = layers.conv2d(
                        net,
                        depth(192), [1, 1],
                        weights_initializer=trunc_normal(0.09),
                        scope='Conv2d_0a_1x1')
                    branch_1 = layers.conv2d(
                        branch_1, depth(256), [3, 3], scope='Conv2d_0b_3x3')
                    branch_1 = layers.conv2d(
                        branch_1, depth(256), [3, 3], stride=2, scope='Conv2d_1a_3x3')
                with variable_scope.variable_scope('Branch_2'):
                    branch_2 = layers_lib.max_pool2d(
                        net, [3, 3], stride=2, scope='MaxPool_1a_3x3')
                net = array_ops.concat([branch_0, branch_1, branch_2], 3)
                end_points[end_point] = net
                if end_point == final_endpoint:
                    return net, end_points
            # 7 x 7 x 1024
            end_point = 'Mixed_5b'
            with variable_scope.variable_scope(end_point):
                with variable_scope.variable_scope('Branch_0'):
                    branch_0 = layers.conv2d(
                        net, depth(352), [1, 1], scope='Conv2d_0a_1x1')
                with variable_scope.variable_scope('Branch_1'):
                    branch_1 = layers.conv2d(
                        net,
                        depth(192), [1, 1],
                        weights_initializer=trunc_normal(0.09),
                        scope='Conv2d_0a_1x1')
                    branch_1 = layers.conv2d(
                        branch_1, depth(320), [3, 3], scope='Conv2d_0b_3x3')
                with variable_scope.variable_scope('Branch_2'):
                    branch_2 = layers.conv2d(
                        net,
                        depth(160), [1, 1],
                        weights_initializer=trunc_normal(0.09),
                        scope='Conv2d_0a_1x1')
                    branch_2 = layers.conv2d(
                        branch_2, depth(224), [3, 3], scope='Conv2d_0b_3x3')
                    branch_2 = layers.conv2d(
                        branch_2, depth(224), [3, 3], scope='Conv2d_0c_3x3')
                with variable_scope.variable_scope('Branch_3'):
                    branch_3 = layers_lib.avg_pool2d(
                        net, [3, 3], scope='AvgPool_0a_3x3')
                    branch_3 = layers.conv2d(
                        branch_3,
                        depth(128), [1, 1],
                        weights_initializer=trunc_normal(0.1),
                        scope='Conv2d_0b_1x1')
                net = array_ops.concat(
                    [branch_0, branch_1, branch_2, branch_3], 3)
                end_points[end_point] = net
                if end_point == final_endpoint:
                    return net, end_points

            # 7 x 7 x 1024
            end_point = 'Mixed_5c'
            with variable_scope.variable_scope(end_point):
                with variable_scope.variable_scope('Branch_0'):
                    branch_0 = layers.conv2d(
                        net, depth(352), [1, 1], scope='Conv2d_0a_1x1')
                with variable_scope.variable_scope('Branch_1'):
                    branch_1 = layers.conv2d(
                        net,
                        depth(192), [1, 1],
                        weights_initializer=trunc_normal(0.09),
                        scope='Conv2d_0a_1x1')
                    branch_1 = layers.conv2d(
                        branch_1, depth(320), [3, 3], scope='Conv2d_0b_3x3')
                with variable_scope.variable_scope('Branch_2'):
                    branch_2 = layers.conv2d(
                        net,
                        depth(192), [1, 1],
                        weights_initializer=trunc_normal(0.09),
                        scope='Conv2d_0a_1x1')
                    branch_2 = layers.conv2d(
                        branch_2, depth(224), [3, 3], scope='Conv2d_0b_3x3')
                    branch_2 = layers.conv2d(
                        branch_2, depth(224), [3, 3], scope='Conv2d_0c_3x3')
                with variable_scope.variable_scope('Branch_3'):
                    branch_3 = layers_lib.max_pool2d(
                        net, [3, 3], scope='MaxPool_0a_3x3')
                    branch_3 = layers.conv2d(
                        branch_3,
                        depth(128), [1, 1],
                        weights_initializer=trunc_normal(0.1),
                        scope='Conv2d_0b_1x1')
                net = array_ops.concat(
                    [branch_0, branch_1, branch_2, branch_3], 3)
                end_points[end_point] = net
                if end_point == final_endpoint:
                    return net, end_points
        raise ValueError('Unknown final endpoint %s' % final_endpoint)
Exemplo n.º 7
0
def inception_v3_base(inputs,
                      final_endpoint='Mixed_7c',
                      min_depth=16,
                      depth_multiplier=1.0,
                      scope=None):
    """Inception model from http://arxiv.org/abs/1512.00567.

    Constructs an Inception v3 network from inputs to the given final endpoint.
    This method can construct the network up to the final inception block
    Mixed_7c.

    Note that the names of the layers in the paper do not correspond to the names
    of the endpoints registered by this function although they build the same
    network.

    Here is a mapping from the old_names to the new names:
    Old name          | New name
    =======================================
    conv0             | Conv2d_1a_3x3
    conv1             | Conv2d_2a_3x3
    conv2             | Conv2d_2b_3x3
    pool1             | MaxPool_3a_3x3
    conv3             | Conv2d_3b_1x1
    conv4             | Conv2d_4a_3x3
    pool2             | MaxPool_5a_3x3
    mixed_35x35x256a  | Mixed_5b
    mixed_35x35x288a  | Mixed_5c
    mixed_35x35x288b  | Mixed_5d
    mixed_17x17x768a  | Mixed_6a
    mixed_17x17x768b  | Mixed_6b
    mixed_17x17x768c  | Mixed_6c
    mixed_17x17x768d  | Mixed_6d
    mixed_17x17x768e  | Mixed_6e
    mixed_8x8x1280a   | Mixed_7a
    mixed_8x8x2048a   | Mixed_7b
    mixed_8x8x2048b   | Mixed_7c

    Args:
      inputs: a tensor of size [batch_size, height, width, channels].
      final_endpoint: specifies the endpoint to construct the network up to. It
        can be one of ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
        'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3', 'MaxPool_5a_3x3',
        'Mixed_5b', 'Mixed_5c', 'Mixed_5d', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c',
        'Mixed_6d', 'Mixed_6e', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c'].
      min_depth: Minimum depth value (number of channels) for all convolution ops.
        Enforced when depth_multiplier < 1, and not an active constraint when
        depth_multiplier >= 1.
      depth_multiplier: Float multiplier for the depth (number of channels)
        for all convolution ops. The value must be greater than zero. Typical
        usage will be to set this value in (0, 1) to reduce the number of
        parameters or computation cost of the model.
      scope: Optional variable_scope.

    Returns:
      tensor_out: output tensor corresponding to the final_endpoint.
      end_points: a set of activations for external use, for example summaries or
                  losses.

    Raises:
      ValueError: if final_endpoint is not set to one of the predefined values,
                  or depth_multiplier <= 0
    """
    # end_points will collect relevant activations for external use, for example
    # summaries or losses.
    end_points = {}

    if depth_multiplier <= 0:
        raise ValueError('depth_multiplier is not greater than zero.')

    def depth(d):
        return max(int(d * depth_multiplier), min_depth)

    with variable_scope.variable_scope(scope, 'InceptionV3', [inputs]):
        with arg_scope(
            [layers.conv2d, layers_lib.max_pool2d, layers_lib.avg_pool2d],
                stride=1,
                padding='VALID'):
            # 299 x 299 x 3
            end_point = 'Conv2d_1a_3x3'
            net = layers.conv2d(inputs,
                                depth(32), [3, 3],
                                stride=2,
                                scope=end_point)
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points
            # 149 x 149 x 32
            end_point = 'Conv2d_2a_3x3'
            net = layers.conv2d(net, depth(32), [3, 3], scope=end_point)
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points
            # 147 x 147 x 32
            end_point = 'Conv2d_2b_3x3'
            net = layers.conv2d(net,
                                depth(64), [3, 3],
                                padding='SAME',
                                scope=end_point)
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points
            # 147 x 147 x 64
            end_point = 'MaxPool_3a_3x3'
            net = layers_lib.max_pool2d(net, [3, 3], stride=2, scope=end_point)
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points
            # 73 x 73 x 64
            end_point = 'Conv2d_3b_1x1'
            net = layers.conv2d(net, depth(80), [1, 1], scope=end_point)
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points
            # 73 x 73 x 80.
            end_point = 'Conv2d_4a_3x3'
            net = layers.conv2d(net, depth(192), [3, 3], scope=end_point)
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points
            # 71 x 71 x 192.
            end_point = 'MaxPool_5a_3x3'
            net = layers_lib.max_pool2d(net, [3, 3], stride=2, scope=end_point)
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points
            # 35 x 35 x 192.

            # Inception blocks
        with arg_scope(
            [layers.conv2d, layers_lib.max_pool2d, layers_lib.avg_pool2d],
                stride=1,
                padding='SAME'):
            # mixed: 35 x 35 x 256.
            end_point = 'Mixed_5b'
            with variable_scope.variable_scope(end_point):
                with variable_scope.variable_scope('Branch_0'):
                    branch_0 = layers.conv2d(net,
                                             depth(64), [1, 1],
                                             scope='Conv2d_0a_1x1')
                with variable_scope.variable_scope('Branch_1'):
                    branch_1 = layers.conv2d(net,
                                             depth(48), [1, 1],
                                             scope='Conv2d_0a_1x1')
                    branch_1 = layers.conv2d(branch_1,
                                             depth(64), [5, 5],
                                             scope='Conv2d_0b_5x5')
                with variable_scope.variable_scope('Branch_2'):
                    branch_2 = layers.conv2d(net,
                                             depth(64), [1, 1],
                                             scope='Conv2d_0a_1x1')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(96), [3, 3],
                                             scope='Conv2d_0b_3x3')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(96), [3, 3],
                                             scope='Conv2d_0c_3x3')
                with variable_scope.variable_scope('Branch_3'):
                    branch_3 = layers_lib.avg_pool2d(net, [3, 3],
                                                     scope='AvgPool_0a_3x3')
                    branch_3 = layers.conv2d(branch_3,
                                             depth(32), [1, 1],
                                             scope='Conv2d_0b_1x1')
                net = array_ops.concat(
                    [branch_0, branch_1, branch_2, branch_3], 3)
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points

            # mixed_1: 35 x 35 x 288.
            end_point = 'Mixed_5c'
            with variable_scope.variable_scope(end_point):
                with variable_scope.variable_scope('Branch_0'):
                    branch_0 = layers.conv2d(net,
                                             depth(64), [1, 1],
                                             scope='Conv2d_0a_1x1')
                with variable_scope.variable_scope('Branch_1'):
                    branch_1 = layers.conv2d(net,
                                             depth(48), [1, 1],
                                             scope='Conv2d_0b_1x1')
                    branch_1 = layers.conv2d(branch_1,
                                             depth(64), [5, 5],
                                             scope='Conv_1_0c_5x5')
                with variable_scope.variable_scope('Branch_2'):
                    branch_2 = layers.conv2d(net,
                                             depth(64), [1, 1],
                                             scope='Conv2d_0a_1x1')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(96), [3, 3],
                                             scope='Conv2d_0b_3x3')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(96), [3, 3],
                                             scope='Conv2d_0c_3x3')
                with variable_scope.variable_scope('Branch_3'):
                    branch_3 = layers_lib.avg_pool2d(net, [3, 3],
                                                     scope='AvgPool_0a_3x3')
                    branch_3 = layers.conv2d(branch_3,
                                             depth(64), [1, 1],
                                             scope='Conv2d_0b_1x1')
                net = array_ops.concat(
                    [branch_0, branch_1, branch_2, branch_3], 3)
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points

            # mixed_2: 35 x 35 x 288.
            end_point = 'Mixed_5d'
            with variable_scope.variable_scope(end_point):
                with variable_scope.variable_scope('Branch_0'):
                    branch_0 = layers.conv2d(net,
                                             depth(64), [1, 1],
                                             scope='Conv2d_0a_1x1')
                with variable_scope.variable_scope('Branch_1'):
                    branch_1 = layers.conv2d(net,
                                             depth(48), [1, 1],
                                             scope='Conv2d_0a_1x1')
                    branch_1 = layers.conv2d(branch_1,
                                             depth(64), [5, 5],
                                             scope='Conv2d_0b_5x5')
                with variable_scope.variable_scope('Branch_2'):
                    branch_2 = layers.conv2d(net,
                                             depth(64), [1, 1],
                                             scope='Conv2d_0a_1x1')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(96), [3, 3],
                                             scope='Conv2d_0b_3x3')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(96), [3, 3],
                                             scope='Conv2d_0c_3x3')
                with variable_scope.variable_scope('Branch_3'):
                    branch_3 = layers_lib.avg_pool2d(net, [3, 3],
                                                     scope='AvgPool_0a_3x3')
                    branch_3 = layers.conv2d(branch_3,
                                             depth(64), [1, 1],
                                             scope='Conv2d_0b_1x1')
                net = array_ops.concat(
                    [branch_0, branch_1, branch_2, branch_3], 3)
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points

            # mixed_3: 17 x 17 x 768.
            end_point = 'Mixed_6a'
            with variable_scope.variable_scope(end_point):
                with variable_scope.variable_scope('Branch_0'):
                    branch_0 = layers.conv2d(net,
                                             depth(384), [3, 3],
                                             stride=2,
                                             padding='VALID',
                                             scope='Conv2d_1a_1x1')
                with variable_scope.variable_scope('Branch_1'):
                    branch_1 = layers.conv2d(net,
                                             depth(64), [1, 1],
                                             scope='Conv2d_0a_1x1')
                    branch_1 = layers.conv2d(branch_1,
                                             depth(96), [3, 3],
                                             scope='Conv2d_0b_3x3')
                    branch_1 = layers.conv2d(branch_1,
                                             depth(96), [3, 3],
                                             stride=2,
                                             padding='VALID',
                                             scope='Conv2d_1a_1x1')
                with variable_scope.variable_scope('Branch_2'):
                    branch_2 = layers_lib.max_pool2d(net, [3, 3],
                                                     stride=2,
                                                     padding='VALID',
                                                     scope='MaxPool_1a_3x3')
                net = array_ops.concat([branch_0, branch_1, branch_2], 3)
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points

            # mixed4: 17 x 17 x 768.
            end_point = 'Mixed_6b'
            with variable_scope.variable_scope(end_point):
                with variable_scope.variable_scope('Branch_0'):
                    branch_0 = layers.conv2d(net,
                                             depth(192), [1, 1],
                                             scope='Conv2d_0a_1x1')
                with variable_scope.variable_scope('Branch_1'):
                    branch_1 = layers.conv2d(net,
                                             depth(128), [1, 1],
                                             scope='Conv2d_0a_1x1')
                    branch_1 = layers.conv2d(branch_1,
                                             depth(128), [1, 7],
                                             scope='Conv2d_0b_1x7')
                    branch_1 = layers.conv2d(branch_1,
                                             depth(192), [7, 1],
                                             scope='Conv2d_0c_7x1')
                with variable_scope.variable_scope('Branch_2'):
                    branch_2 = layers.conv2d(net,
                                             depth(128), [1, 1],
                                             scope='Conv2d_0a_1x1')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(128), [7, 1],
                                             scope='Conv2d_0b_7x1')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(128), [1, 7],
                                             scope='Conv2d_0c_1x7')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(128), [7, 1],
                                             scope='Conv2d_0d_7x1')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(192), [1, 7],
                                             scope='Conv2d_0e_1x7')
                with variable_scope.variable_scope('Branch_3'):
                    branch_3 = layers_lib.avg_pool2d(net, [3, 3],
                                                     scope='AvgPool_0a_3x3')
                    branch_3 = layers.conv2d(branch_3,
                                             depth(192), [1, 1],
                                             scope='Conv2d_0b_1x1')
                net = array_ops.concat(
                    [branch_0, branch_1, branch_2, branch_3], 3)
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points

            # mixed_5: 17 x 17 x 768.
            end_point = 'Mixed_6c'
            with variable_scope.variable_scope(end_point):
                with variable_scope.variable_scope('Branch_0'):
                    branch_0 = layers.conv2d(net,
                                             depth(192), [1, 1],
                                             scope='Conv2d_0a_1x1')
                with variable_scope.variable_scope('Branch_1'):
                    branch_1 = layers.conv2d(net,
                                             depth(160), [1, 1],
                                             scope='Conv2d_0a_1x1')
                    branch_1 = layers.conv2d(branch_1,
                                             depth(160), [1, 7],
                                             scope='Conv2d_0b_1x7')
                    branch_1 = layers.conv2d(branch_1,
                                             depth(192), [7, 1],
                                             scope='Conv2d_0c_7x1')
                with variable_scope.variable_scope('Branch_2'):
                    branch_2 = layers.conv2d(net,
                                             depth(160), [1, 1],
                                             scope='Conv2d_0a_1x1')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(160), [7, 1],
                                             scope='Conv2d_0b_7x1')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(160), [1, 7],
                                             scope='Conv2d_0c_1x7')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(160), [7, 1],
                                             scope='Conv2d_0d_7x1')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(192), [1, 7],
                                             scope='Conv2d_0e_1x7')
                with variable_scope.variable_scope('Branch_3'):
                    branch_3 = layers_lib.avg_pool2d(net, [3, 3],
                                                     scope='AvgPool_0a_3x3')
                    branch_3 = layers.conv2d(branch_3,
                                             depth(192), [1, 1],
                                             scope='Conv2d_0b_1x1')
                net = array_ops.concat(
                    [branch_0, branch_1, branch_2, branch_3], 3)
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points
            # mixed_6: 17 x 17 x 768.
            end_point = 'Mixed_6d'
            with variable_scope.variable_scope(end_point):
                with variable_scope.variable_scope('Branch_0'):
                    branch_0 = layers.conv2d(net,
                                             depth(192), [1, 1],
                                             scope='Conv2d_0a_1x1')
                with variable_scope.variable_scope('Branch_1'):
                    branch_1 = layers.conv2d(net,
                                             depth(160), [1, 1],
                                             scope='Conv2d_0a_1x1')
                    branch_1 = layers.conv2d(branch_1,
                                             depth(160), [1, 7],
                                             scope='Conv2d_0b_1x7')
                    branch_1 = layers.conv2d(branch_1,
                                             depth(192), [7, 1],
                                             scope='Conv2d_0c_7x1')
                with variable_scope.variable_scope('Branch_2'):
                    branch_2 = layers.conv2d(net,
                                             depth(160), [1, 1],
                                             scope='Conv2d_0a_1x1')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(160), [7, 1],
                                             scope='Conv2d_0b_7x1')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(160), [1, 7],
                                             scope='Conv2d_0c_1x7')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(160), [7, 1],
                                             scope='Conv2d_0d_7x1')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(192), [1, 7],
                                             scope='Conv2d_0e_1x7')
                with variable_scope.variable_scope('Branch_3'):
                    branch_3 = layers_lib.avg_pool2d(net, [3, 3],
                                                     scope='AvgPool_0a_3x3')
                    branch_3 = layers.conv2d(branch_3,
                                             depth(192), [1, 1],
                                             scope='Conv2d_0b_1x1')
                net = array_ops.concat(
                    [branch_0, branch_1, branch_2, branch_3], 3)
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points

            # mixed_7: 17 x 17 x 768.
            end_point = 'Mixed_6e'
            with variable_scope.variable_scope(end_point):
                with variable_scope.variable_scope('Branch_0'):
                    branch_0 = layers.conv2d(net,
                                             depth(192), [1, 1],
                                             scope='Conv2d_0a_1x1')
                with variable_scope.variable_scope('Branch_1'):
                    branch_1 = layers.conv2d(net,
                                             depth(192), [1, 1],
                                             scope='Conv2d_0a_1x1')
                    branch_1 = layers.conv2d(branch_1,
                                             depth(192), [1, 7],
                                             scope='Conv2d_0b_1x7')
                    branch_1 = layers.conv2d(branch_1,
                                             depth(192), [7, 1],
                                             scope='Conv2d_0c_7x1')
                with variable_scope.variable_scope('Branch_2'):
                    branch_2 = layers.conv2d(net,
                                             depth(192), [1, 1],
                                             scope='Conv2d_0a_1x1')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(192), [7, 1],
                                             scope='Conv2d_0b_7x1')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(192), [1, 7],
                                             scope='Conv2d_0c_1x7')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(192), [7, 1],
                                             scope='Conv2d_0d_7x1')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(192), [1, 7],
                                             scope='Conv2d_0e_1x7')
                with variable_scope.variable_scope('Branch_3'):
                    branch_3 = layers_lib.avg_pool2d(net, [3, 3],
                                                     scope='AvgPool_0a_3x3')
                    branch_3 = layers.conv2d(branch_3,
                                             depth(192), [1, 1],
                                             scope='Conv2d_0b_1x1')
                net = array_ops.concat(
                    [branch_0, branch_1, branch_2, branch_3], 3)
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points

            # mixed_8: 8 x 8 x 1280.
            end_point = 'Mixed_7a'
            with variable_scope.variable_scope(end_point):
                with variable_scope.variable_scope('Branch_0'):
                    branch_0 = layers.conv2d(net,
                                             depth(192), [1, 1],
                                             scope='Conv2d_0a_1x1')
                    branch_0 = layers.conv2d(branch_0,
                                             depth(320), [3, 3],
                                             stride=2,
                                             padding='VALID',
                                             scope='Conv2d_1a_3x3')
                with variable_scope.variable_scope('Branch_1'):
                    branch_1 = layers.conv2d(net,
                                             depth(192), [1, 1],
                                             scope='Conv2d_0a_1x1')
                    branch_1 = layers.conv2d(branch_1,
                                             depth(192), [1, 7],
                                             scope='Conv2d_0b_1x7')
                    branch_1 = layers.conv2d(branch_1,
                                             depth(192), [7, 1],
                                             scope='Conv2d_0c_7x1')
                    branch_1 = layers.conv2d(branch_1,
                                             depth(192), [3, 3],
                                             stride=2,
                                             padding='VALID',
                                             scope='Conv2d_1a_3x3')
                with variable_scope.variable_scope('Branch_2'):
                    branch_2 = layers_lib.max_pool2d(net, [3, 3],
                                                     stride=2,
                                                     padding='VALID',
                                                     scope='MaxPool_1a_3x3')
                net = array_ops.concat([branch_0, branch_1, branch_2], 3)
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points
            # mixed_9: 8 x 8 x 2048.
            end_point = 'Mixed_7b'
            with variable_scope.variable_scope(end_point):
                with variable_scope.variable_scope('Branch_0'):
                    branch_0 = layers.conv2d(net,
                                             depth(320), [1, 1],
                                             scope='Conv2d_0a_1x1')
                with variable_scope.variable_scope('Branch_1'):
                    branch_1 = layers.conv2d(net,
                                             depth(384), [1, 1],
                                             scope='Conv2d_0a_1x1')
                    branch_1 = array_ops.concat([
                        layers.conv2d(branch_1,
                                      depth(384), [1, 3],
                                      scope='Conv2d_0b_1x3'),
                        layers.conv2d(branch_1,
                                      depth(384), [3, 1],
                                      scope='Conv2d_0b_3x1')
                    ], 3)
                with variable_scope.variable_scope('Branch_2'):
                    branch_2 = layers.conv2d(net,
                                             depth(448), [1, 1],
                                             scope='Conv2d_0a_1x1')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(384), [3, 3],
                                             scope='Conv2d_0b_3x3')
                    branch_2 = array_ops.concat([
                        layers.conv2d(branch_2,
                                      depth(384), [1, 3],
                                      scope='Conv2d_0c_1x3'),
                        layers.conv2d(branch_2,
                                      depth(384), [3, 1],
                                      scope='Conv2d_0d_3x1')
                    ], 3)
                with variable_scope.variable_scope('Branch_3'):
                    branch_3 = layers_lib.avg_pool2d(net, [3, 3],
                                                     scope='AvgPool_0a_3x3')
                    branch_3 = layers.conv2d(branch_3,
                                             depth(192), [1, 1],
                                             scope='Conv2d_0b_1x1')
                net = array_ops.concat(
                    [branch_0, branch_1, branch_2, branch_3], 3)
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points

            # mixed_10: 8 x 8 x 2048.
            end_point = 'Mixed_7c'
            with variable_scope.variable_scope(end_point):
                with variable_scope.variable_scope('Branch_0'):
                    branch_0 = layers.conv2d(net,
                                             depth(320), [1, 1],
                                             scope='Conv2d_0a_1x1')
                with variable_scope.variable_scope('Branch_1'):
                    branch_1 = layers.conv2d(net,
                                             depth(384), [1, 1],
                                             scope='Conv2d_0a_1x1')
                    branch_1 = array_ops.concat([
                        layers.conv2d(branch_1,
                                      depth(384), [1, 3],
                                      scope='Conv2d_0b_1x3'),
                        layers.conv2d(branch_1,
                                      depth(384), [3, 1],
                                      scope='Conv2d_0c_3x1')
                    ], 3)
                with variable_scope.variable_scope('Branch_2'):
                    branch_2 = layers.conv2d(net,
                                             depth(448), [1, 1],
                                             scope='Conv2d_0a_1x1')
                    branch_2 = layers.conv2d(branch_2,
                                             depth(384), [3, 3],
                                             scope='Conv2d_0b_3x3')
                    branch_2 = array_ops.concat([
                        layers.conv2d(branch_2,
                                      depth(384), [1, 3],
                                      scope='Conv2d_0c_1x3'),
                        layers.conv2d(branch_2,
                                      depth(384), [3, 1],
                                      scope='Conv2d_0d_3x1')
                    ], 3)
                with variable_scope.variable_scope('Branch_3'):
                    branch_3 = layers_lib.avg_pool2d(net, [3, 3],
                                                     scope='AvgPool_0a_3x3')
                    branch_3 = layers.conv2d(branch_3,
                                             depth(192), [1, 1],
                                             scope='Conv2d_0b_1x1')
                net = array_ops.concat(
                    [branch_0, branch_1, branch_2, branch_3], 3)
            end_points[end_point] = net
            if end_point == final_endpoint:
                return net, end_points
        raise ValueError('Unknown final endpoint %s' % final_endpoint)
Exemplo n.º 8
0
def overfeat(inputs,
             num_classes=1000,
             is_training=True,
             dropout_keep_prob=0.5,
             spatial_squeeze=True,
             scope='overfeat'):
    """Contains the model definition for the OverFeat network.

    The definition for the network was obtained from:
      OverFeat: Integrated Recognition, Localization and Detection using
      Convolutional Networks
      Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus and
      Yann LeCun, 2014
      http://arxiv.org/abs/1312.6229

    Note: All the fully_connected layers have been transformed to conv2d layers.
          To use in classification mode, resize input to 231x231. To use in fully
          convolutional mode, set spatial_squeeze to false.

    Args:
      inputs: a tensor of size [batch_size, height, width, channels].
      num_classes: number of predicted classes.
      is_training: whether or not the model is being trained.
      dropout_keep_prob: the probability that activations are kept in the dropout
        layers during training.
      spatial_squeeze: whether or not should squeeze the spatial dimensions of the
        outputs. Useful to remove unnecessary dimensions for classification.
      scope: Optional scope for the variables.

    Returns:
      the last op containing the log predictions and end_points dict.

    """
    with variable_scope.variable_scope(scope, 'overfeat', [inputs]) as sc:
        end_points_collection = sc.name + '_end_points'
        # Collect outputs for conv2d, fully_connected and max_pool2d
        with arg_scope(
            [layers.conv2d, layers_lib.fully_connected, layers_lib.max_pool2d],
                outputs_collections=end_points_collection):
            net = layers.conv2d(inputs,
                                64, [11, 11],
                                4,
                                padding='VALID',
                                scope='conv1')
            net = layers_lib.max_pool2d(net, [2, 2], scope='pool1')
            net = layers.conv2d(net,
                                256, [5, 5],
                                padding='VALID',
                                scope='conv2')
            net = layers_lib.max_pool2d(net, [2, 2], scope='pool2')
            net = layers.conv2d(net, 512, [3, 3], scope='conv3')
            net = layers.conv2d(net, 1024, [3, 3], scope='conv4')
            net = layers.conv2d(net, 1024, [3, 3], scope='conv5')
            net = layers_lib.max_pool2d(net, [2, 2], scope='pool5')
            with arg_scope(
                [layers.conv2d],
                    weights_initializer=trunc_normal(0.005),
                    biases_initializer=init_ops.constant_initializer(0.1)):
                # Use conv2d instead of fully_connected layers.
                net = layers.conv2d(net,
                                    3072, [6, 6],
                                    padding='VALID',
                                    scope='fc6')
                net = layers_lib.dropout(net,
                                         dropout_keep_prob,
                                         is_training=is_training,
                                         scope='dropout6')
                net = layers.conv2d(net, 4096, [1, 1], scope='fc7')
                net = layers_lib.dropout(net,
                                         dropout_keep_prob,
                                         is_training=is_training,
                                         scope='dropout7')
                net = layers.conv2d(
                    net,
                    num_classes, [1, 1],
                    activation_fn=None,
                    normalizer_fn=None,
                    biases_initializer=init_ops.zeros_initializer(),
                    scope='fc8')
            # Convert end_points_collection into a end_point dict.
            end_points = utils.convert_collection_to_dict(
                end_points_collection)
            if spatial_squeeze:
                net = array_ops.squeeze(net, [1, 2], name='fc8/squeezed')
                end_points[sc.name + '/fc8'] = net
            return net, end_points