Exemplo n.º 1
0
def get_radec_ephemeris(eph_json_single, start_time, end_time, interval,
                        observing_facility, observing_site):
    observing_facility_class = facility.get_service_class(observing_facility)
    sites = observing_facility_class().get_observing_sites()
    observer = None
    for site_name in sites:
        obs_site = sites[site_name]
        if obs_site['sitecode'] == observing_site:

            observer = coordinates.EarthLocation(
                lat=obs_site.get('latitude') * units.deg,
                lon=obs_site.get('longitude') * units.deg,
                height=obs_site.get('elevation') * units.m)
    if observer is None:
        # this condition occurs if the facility being requested isn't in the site list provided.
        return (None, None, None, None, -1)
    ra = []
    dec = []
    mjd = []
    for i in range(len(eph_json_single)):
        ra.append(float(eph_json_single[i]['R']))
        dec.append(float(eph_json_single[i]['D']))
        mjd.append(float(eph_json_single[i]['t']))
    ra = np.array(ra)
    dec = np.array(dec)
    mjd = np.array(mjd)

    fra = interp.interp1d(mjd, ra)
    fdec = interp.interp1d(mjd, dec)

    start = Time(start_time)
    end = Time(end_time)

    time_range = time_grid_from_range(time_range=[start, end],
                                      time_resolution=interval * units.hour)
    tr_mjd = time_range.mjd

    airmasses = []
    sun_alts = []
    for i in range(len(tr_mjd)):
        c = SkyCoord(fra(time_range[i].mjd),
                     fdec(time_range[i].mjd),
                     frame="icrs",
                     unit="deg")
        t = Time(tr_mjd[i], format='mjd')
        sun = coordinates.get_sun(t)
        altaz = c.transform_to(AltAz(obstime=t, location=observer))
        sun_altaz = sun.transform_to(AltAz(obstime=t, location=observer))
        airmass = altaz.secz
        airmasses.append(airmass)
        sun_alts.append(sun_altaz.alt.value)
    airmasses = np.array(airmasses)
    sun_alts = np.array(sun_alts)

    if np.min(tr_mjd) >= np.min(mjd) and np.max(tr_mjd) <= np.max(mjd):
        return (tr_mjd, fra(tr_mjd), fdec(tr_mjd), airmasses, sun_alts)
    else:
        return (None, None, None, None, -2)
Exemplo n.º 2
0
def get_astroplan_sun_and_time(start_time, end_time, interval):
    """
    Uses astroplan's time_grid_from_range to generate
    an astropy Time object covering the time range.

    Uses astropy's get_sun to generate sun positions over
    that time range.

    If time range is small and interval is coarse, approximates
    the sun at a fixed position from the middle of the
    time range to speed up calculations.
    Since the sun moves ~4 minutes a day, this approximation
    happens when the number of days covered by the time range
    * 4 is less than the interval (in minutes) / 2.

    :param start_time: start of the window for which to calculate the airmass
    :type start_time: datetime

    :param end_time: end of the window for which to calculate the airmass
    :type end_time: datetime

    :param interval: time interval, in minutes, at which to calculate airmass within the given window
    :type interval: int

    :returns: ra/dec positions of the sun over the time range,
        time range between start_time and end_time at interval
    :rtype: astropy SkyCoord, astropy Time
    """

    start = Time(start_time)
    end = Time(end_time)

    time_range = time_grid_from_range(time_range=[start, end],
                                      time_resolution=interval * units.minute)

    number_of_days = end.mjd - start.mjd
    if number_of_days * 4 < float(interval) / 2:
        # Hack to speed up calculation by factor of ~3
        sun_coords = get_sun(time_range[int(len(time_range) / 2)])
        sun = FixedTarget(name='sun',
                          coord=SkyCoord(sun_coords.ra,
                                         sun_coords.dec,
                                         unit='deg'))
    else:
        sun = get_sun(time_range)

    return sun, time_range
Exemplo n.º 3
0
def get_forecast_window(start=None,
                        size=30 * units.day,
                        cadence=2 * units.min):
    """
    Get an array of times in JD to forecast transits.

    Defaults to an array covering the next 30 days at 2-min cadence.

    Parameters
    ----------
    start : `~astropy.time.Time`, optional
        Start of the forecast window. `None` defaults to now.

    size : float or `~astropy.units.Quantity`, optional
        Size of the forecast window. Defaults to days if unit not specified.

    cadence : float or `~astropy.units.Quantity`, optional
        Cadence of the times in the forecast window. Defaults to 2-min if
        unit not specfied.

    Returns
    -------
    tforecast : `~astropy.time.Time`
        Array of times.
    """
    if start is None:
        start = Time.now()
    if type(size) is units.Quantity:
        size = size.to(units.day)
    else:
        size = size * units.day
    if type(cadence) is units.Quantity:
        cadence = cadence.to(units.day)
    else:
        cadence = cadence * units.day

    tforecast = ap.time_grid_from_range([start, start + size], cadence)

    return tforecast
def get_24hr_airmass(target, interval, airmass_limit):

    plot_data = []
    
    start = Time(datetime.datetime.utcnow())
    end = Time(start.datetime + datetime.timedelta(days=1))
    time_range = time_grid_from_range(
        time_range = [start, end],
        time_resolution = interval*u.minute)
    time_plot = time_range.datetime
    
    fixed_target = FixedTarget(name = target.name, 
        coord = SkyCoord(
            target.ra,
            target.dec,
            unit = 'deg'
        )
    )

    #Hack to speed calculation up by factor of ~3
    sun_coords = get_sun(time_range[int(len(time_range)/2)])
    fixed_sun = FixedTarget(name = 'sun',
        coord = SkyCoord(
            sun_coords.ra,
            sun_coords.dec,
            unit = 'deg'
        )
    )

    #Colors to match SNEx1
    colors = {
        'Siding Spring': '#3366cc',
        'Sutherland': '#dc3912',
        'Teide': '#8c6239',
        'Cerro Tololo': '#ff9900',
        'McDonald': '#109618',
        'Haleakala': '#990099'
    }

    for observing_facility in facility.get_service_classes():

        observing_facility_class = facility.get_service_class(observing_facility)
        sites = observing_facility_class().get_observing_sites()

        for site, site_details in sites.items():

            observer = Observer(
                longitude = site_details.get('longitude')*u.deg,
                latitude = site_details.get('latitude')*u.deg,
                elevation = site_details.get('elevation')*u.m
            )
            
            sun_alt = observer.altaz(time_range, fixed_sun).alt
            obj_airmass = observer.altaz(time_range, fixed_target).secz

            bad_indices = np.argwhere(
                (obj_airmass >= airmass_limit) |
                (obj_airmass <= 1) |
                (sun_alt > -18*u.deg)  #between astro twilights
            )

            obj_airmass = [np.nan if i in bad_indices else float(x)
                for i, x in enumerate(obj_airmass)]

            label = '({facility}) {site}'.format(
                facility = observing_facility, site = site
            )

            plot_data.append(
                go.Scatter(x=time_plot, y=obj_airmass, mode='lines', name=label, marker=dict(color=colors.get(site)))
            )

    return plot_data
Exemplo n.º 5
0
def get_24hr_airmass(target, interval, airmass_limit):

    plot_data = []

    start = Time(datetime.datetime.utcnow())
    end = Time(start.datetime + datetime.timedelta(days=1))
    time_range = time_grid_from_range(time_range=[start, end],
                                      time_resolution=interval * u.minute)
    time_plot = time_range.datetime

    fixed_target = FixedTarget(name=target.name,
                               coord=SkyCoord(target.ra,
                                              target.dec,
                                              unit='deg'))

    #Hack to speed calculation up by factor of ~3
    sun_coords = get_sun(time_range[int(len(time_range) / 2)])
    fixed_sun = FixedTarget(name='sun',
                            coord=SkyCoord(sun_coords.ra,
                                           sun_coords.dec,
                                           unit='deg'))

    for observing_facility in facility.get_service_classes():

        if observing_facility != 'LCO':
            continue

        observing_facility_class = facility.get_service_class(
            observing_facility)
        sites = observing_facility_class().get_observing_sites()

        for site, site_details in sites.items():

            observer = Observer(longitude=site_details.get('longitude') *
                                u.deg,
                                latitude=site_details.get('latitude') * u.deg,
                                elevation=site_details.get('elevation') * u.m)

            sun_alt = observer.altaz(time_range, fixed_sun).alt
            obj_airmass = observer.altaz(time_range, fixed_target).secz

            bad_indices = np.argwhere(
                (obj_airmass >= airmass_limit) | (obj_airmass <= 1)
                | (sun_alt > -18 * u.deg)  #between astro twilights
            )

            obj_airmass = [
                np.nan if i in bad_indices else float(x)
                for i, x in enumerate(obj_airmass)
            ]

            label = '({facility}) {site}'.format(facility=observing_facility,
                                                 site=site)

            plot_data.append(
                go.Scatter(
                    x=time_plot,
                    y=obj_airmass,
                    mode='lines',
                    name=label,
                ))

    return plot_data
def make_obs_table(obs_info, source_list, save=True, min_uptime=10):

    tab = Table.read(source_list, format="ascii.csv")
    targets = [
        FixedTarget(coord=SkyCoord(ra=ra, dec=dec, unit=(u.hourangle, u.deg)),
                    name=source) for source, ra, dec, _ in tab
    ]

    # Some arecibo specific settings
    arecibo_site = E.from_geocentric(x=2390490.0,
                                     y=-5564764.0,
                                     z=1994727.0,
                                     unit=u.meter)
    arecibo = Observer(location=arecibo_site, name="AO")
    constraints = [
        AltitudeConstraint((90 - 19.7) * u.deg, (90 - 1.06) * u.deg)
    ]
    min_alt = (90 - 19.7) * u.deg
    max_alt = (90 - 1.06) * u.deg
    utc_offset = 4 * u.hour
    ast_to_utc_offset = TimezoneInfo(utc_offset=utc_offset)

    months = [
        'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct',
        'Nov', 'Dec'
    ]

    tstarts = []
    tends = []
    for index, row in obs_info.iterrows():
        obs_month = row['Month']
        for i, month in enumerate(months):
            if month == obs_month:
                break
        i = i + 1
        if row['End_time(AST)'] == '24:00':
            row['End_time(AST)'] = '23:59'
        tstarts.append(
            f"{row['Year']}-{i:02d}-{row['Start_date']} {row['Start_time(AST)']}"
        )
        tends.append(
            f"{row['Year']}-{i:02d}-{row['End_date']} {row['End_time(AST)']}")

    ots = []
    for st, et in zip(tstarts, tends):

        #setting up for altitude constraints
        tstart_obs = Time(st) + utc_offset
        tobs_len = (Time(et) - Time(st)).sec / (60 * 60)  #hours
        delta_t = np.linspace(0, tobs_len, 100) * u.hour
        frame_obs = AltAz(obstime=tstart_obs + delta_t, location=arecibo_site)

        #setting up for astroplan observability table
        st_utc = str(Time(st).to_datetime(timezone=ast_to_utc_offset))[:-6]
        et_utc = str(Time(et).to_datetime(timezone=ast_to_utc_offset))[:-6]

        time_range = Time([st_utc, et_utc], scale='utc')

        print(f'Making observability table for {st}')
        ot = observability_table(constraints,
                                 arecibo,
                                 targets,
                                 times=time_grid_from_range(
                                     time_range, 5 * u.min)).to_pandas()

        ot['ever obs'] = ot['ever observable']

        ot = ot.drop([
            'fraction of time observable', 'ever observable',
            'always observable'
        ],
                     axis=1)
        ot_obs = ot[ot['ever obs']]

        ra = []
        dec = []
        set_time = []
        up_time = []
        rise_time = []
        tstart_observable = []
        tend_observable = []

        print(f'Processing observability table for {st}')
        for i, row in ot_obs.iterrows():
            ra.append(targets[i].ra.deg)
            dec.append(targets[i].dec.deg)

            # manual altitude constraints
            target = SkyCoord(ra=targets[i].ra, dec=targets[i].dec)
            frame_obs_altaz = target.transform_to(frame_obs)

            times_observable = tstart_obs + delta_t[
                (frame_obs_altaz.alt > min_alt)
                & (frame_obs_altaz.alt < max_alt)]

            tstart_observable.append(times_observable.min() - utc_offset)

            if Time(times_observable.max()) < Time(et_utc):
                tend_observable.append(times_observable.max() - utc_offset)
                up_time.append((Time(times_observable.max()) -
                                Time(times_observable.min())).sec / 60)
            else:
                tend_observable.append(Time(et_utc) - utc_offset)
                up_time.append(
                    (Time(et_utc) - Time(times_observable.min())).sec / 60)

        ot_obs['RA'] = ra
        ot_obs['DEC'] = dec
        ot_obs['uptime (min)'] = up_time

        ot_obs['tstart_obs (AST)'] = tstart_observable
        ot_obs['tend_obs (AST)'] = tend_observable

        ot_obs = ot_obs[ot_obs['uptime (min)'] > min_uptime]
        ot_obs = ot_obs.drop(['ever obs'], axis=1)
        ots.append(ot_obs)

        if save:
            fname = str(Time(st_utc) - utc_offset)
            f = open(fname.replace(' ', '_') + '.tab', 'w')
            f.write(
                f'Observations from {str(Time(st_utc) - utc_offset)} to {str(Time(et_utc) - utc_offset)}\n'
            )
            f.write(f'Length of observations: {tobs_len:.2f}hr \n')
            f.write(
                tabulate(ot_obs,
                         headers='keys',
                         tablefmt='psql',
                         showindex="never"))
            f.close()
Exemplo n.º 7
0
    obs_database = {
        name: dict(times=[], fluxes=[], model=[], transit=False)
        for name in table['spc']
    }

    for i in range(n_years * 365):
        # Simulate weather losses
        if np.random.rand() > fraction_cloudy:
            time = start_time + i * u.day
            night_start = saintex.twilight_evening_nautical(time,
                                                            which='previous')
            night_end = saintex.twilight_morning_nautical(time, which='next')
            night_duration = night_end - night_start

            times = time_grid_from_range((night_start, night_end),
                                         time_resolution=1.6 * u.min)

            obs_table = observability_table(constraints,
                                            saintex,
                                            targets,
                                            times=times)
            # Prevent memory from getting out of hand by clearing out cache:
            saintex._altaz_cache = {}
            mask_targets_visible_2hrs = obs_table[
                'fraction of time observable'] * night_duration > 6 * u.hr

            object_inds_to_observe = np.random.choice(
                np.argwhere(mask_targets_visible_2hrs)[:, 0],
                size=n_objects_per_night)

            target_inds_observed.update(object_inds_to_observe)
Exemplo n.º 8
0
#
#
#observability_table = observability_table(constraints, observer, targets[2:],
#                                          time_range=time_range,
#                                          time_grid_resolution=1*u.hour)
#print(observability_table)

## calculate observability of most-observable target
#observability = is_observable(constraints, observer, targets[-1],
#                              time_range=time_range,
#                              time_grid_resolution=1*u.hr)

# Create grid of times from ``start_time`` to ``end_time``
# with resolution ``time_resolution``
time_resolution = 7 * u.day
time_grid = time_grid_from_range(time_range, time_resolution=time_resolution)

observability_grid = np.zeros((24, len(time_grid)), dtype='bool')

for targetlon in (-5, 5, 15, 25, 35, 45, 55):
    target = coordinates.SkyCoord(targetlon * u.deg,
                                  0 * u.deg,
                                  frame='galactic')

    pb = ProgressBar(observability_grid.shape[1])

    for ii, day in (enumerate(time_grid)):
        day_time_grid = time_grid_from_range(Time(
            [day, day + TimeDelta(1 * u.day)]),
                                             time_resolution=1 * u.hour)
        assert np.all(np.isfinite(day_time_grid.value))
Exemplo n.º 9
0
longitude = -104.2455
latitude = 34.4714
elevation = 0 * u.m
location = EarthLocation.from_geodetic(longitude, latitude, elevation)

observer = Observer(name='Fort Sumner',
               location=location,
               pressure=0.615 * u.bar,
               relative_humidity=0.11,
               temperature=0 * u.deg_C,
               timezone=timezone('US/Mountain'),
               description="Launch")
               
time_range = Time(["2016-09-16 03:00","2016-09-16 13:00"],scale='utc')
time_grid = time_grid_from_range(time_range)


clean_table = pickle.load(open('data/clean_table.data','r'))

# add ratios
clean_table['R19'] = clean_table['R50_19']/clean_table['R50_cal_19']
clean_table['R31'] = clean_table['R50_31']/clean_table['R50_cal_31']
clean_table['R37'] = clean_table['R50_37']/clean_table['R50_cal_37']

clean_table.sort(['F37','R37'])
clean_table.reverse()
clean_table = clean_table[clean_table['F37']>20]
print clean_table['SOFIA_name','RA','DEC']

#targets = [FixedTarget(coord=SkyCoord(ra=334.82557*u.deg,dec=63.313065*u.deg),name='S140.5')]
Exemplo n.º 10
0
prihdr['cmd'] = ('X', 'command sent to filter-wheel box')
prihdr['channel'] = ('X', 'camera type (e.g. B=blue,R=red)')
prihdr['F_T'] = ('X', 'filter type (e.g. N=narrow band, g=SDSS g)')
prihdr['F_I'] = (0, 'index of filter')
prihdr['F_B'] = (0, 'wavelength (A)')
prihdr['exp'] = (0, 'Exposure time (seconds)')
prihdr['ra'] = (179.755936891, 'RA of obj (deg)')
prihdr['dec'] = (-0.524622205172, 'DEC of obj (deg)')
prihdr['ra_hms'] = (c.ra.to_string(unit=u.hourangle,
                                   sep=':'), 'RA of obj (hourangle)')
prihdr['dec_dms'] = (c.dec.to_string(unit=u.deg, sep=':'), 'DEC of obj (deg)')
################################################################

time_range = Time(["2017-09-03 20:00:00", "2017-09-04 08:00"])
#time1=Time("2016-03-04 12:04")
time_grid = time_grid_from_range(time_range, time_resolution=12 * u.min)
#tt=datetime.datetime(2016, 11, 07, 10, 49, 53, 239,tzinfo=pytz.timezone('Asia/Urumqi'))

data = scipy.ndimage.rotate(hdu[0].data, -6, reshape=False)
fig = plt.figure()
plt.imshow(data, origin='lower', vmin=-0.2, vmax=0.2, cmap=plt.cm.viridis)

exp = 1800

#import numpy as np
path = 'data4/'
#for i in xrange(1):
for i in [1, 2, 3, 4, 6]:
    #    II=np.random.randint(11)
    ff = [0, 1, 2, 0, 1, 1, 6, 7]
    II = ff[i]