Exemplo n.º 1
0
def test_proj_separations():
    """
    Test angular separation functionality
    """
    c1 = ICRS(ra=0*u.deg, dec=0*u.deg)
    c2 = ICRS(ra=0*u.deg, dec=1*u.deg)

    sep = c2.separation(c1)
    # returns an Angle object
    assert isinstance(sep, Angle)

    assert sep.degree == 1
    assert_allclose(sep.arcminute, 60.)

    # these operations have ambiguous interpretations for points on a sphere
    with pytest.raises(TypeError):
        c1 + c2
    with pytest.raises(TypeError):
        c1 - c2

    ngp = Galactic(l=0*u.degree, b=90*u.degree)
    ncp = ICRS(ra=0*u.degree, dec=90*u.degree)

    # if there is a defined conversion between the relevant coordinate systems,
    # it will be automatically performed to get the right angular separation
    assert_allclose(ncp.separation(ngp.transform_to(ICRS)).degree,
                    ncp.separation(ngp).degree)

    # distance from the north galactic pole to celestial pole
    assert_allclose(ncp.separation(ngp.transform_to(ICRS)).degree,
                    62.87174758503201)
Exemplo n.º 2
0
def test_proj_separations():
    """
    Test angular separation functionality
    """
    c1 = ICRS(ra=0 * u.deg, dec=0 * u.deg)
    c2 = ICRS(ra=0 * u.deg, dec=1 * u.deg)

    sep = c2.separation(c1)
    # returns an Angle object
    assert isinstance(sep, Angle)

    assert_allclose(sep.degree, 1.)
    assert_allclose(sep.arcminute, 60.)

    # these operations have ambiguous interpretations for points on a sphere
    with pytest.raises(TypeError):
        c1 + c2
    with pytest.raises(TypeError):
        c1 - c2

    ngp = Galactic(l=0 * u.degree, b=90 * u.degree)
    ncp = ICRS(ra=0 * u.degree, dec=90 * u.degree)

    # if there is a defined conversion between the relevant coordinate systems,
    # it will be automatically performed to get the right angular separation
    assert_allclose(
        ncp.separation(ngp.transform_to(ICRS())).degree,
        ncp.separation(ngp).degree)

    # distance from the north galactic pole to celestial pole
    assert_allclose(
        ncp.separation(ngp.transform_to(ICRS())).degree, 62.87174758503201)
Exemplo n.º 3
0
def test_sep():
    from astropy.coordinates.builtin_frames import ICRS

    i1 = ICRS(ra=0 * u.deg, dec=1 * u.deg)
    i2 = ICRS(ra=0 * u.deg, dec=2 * u.deg)

    sep = i1.separation(i2)
    assert sep.deg == 1

    i3 = ICRS(ra=[1, 2] * u.deg, dec=[3, 4] * u.deg, distance=[5, 6] * u.kpc)
    i4 = ICRS(ra=[1, 2] * u.deg, dec=[3, 4] * u.deg, distance=[4, 5] * u.kpc)

    sep3d = i3.separation_3d(i4)
    assert_allclose(sep3d.to(u.kpc), np.array([1, 1]) * u.kpc)

    # check that it works even with velocities
    i5 = ICRS(ra=[1, 2] * u.deg,
              dec=[3, 4] * u.deg,
              distance=[5, 6] * u.kpc,
              pm_ra_cosdec=[1, 2] * u.mas / u.yr,
              pm_dec=[3, 4] * u.mas / u.yr,
              radial_velocity=[5, 6] * u.km / u.s)
    i6 = ICRS(ra=[1, 2] * u.deg,
              dec=[3, 4] * u.deg,
              distance=[7, 8] * u.kpc,
              pm_ra_cosdec=[1, 2] * u.mas / u.yr,
              pm_dec=[3, 4] * u.mas / u.yr,
              radial_velocity=[5, 6] * u.km / u.s)

    sep3d = i5.separation_3d(i6)
    assert_allclose(sep3d.to(u.kpc), np.array([2, 2]) * u.kpc)
Exemplo n.º 4
0
def test_sep():
    from astropy.coordinates.builtin_frames import ICRS

    i1 = ICRS(ra=0*u.deg, dec=1*u.deg)
    i2 = ICRS(ra=0*u.deg, dec=2*u.deg)

    sep = i1.separation(i2)
    assert sep.deg == 1

    i3 = ICRS(ra=[1, 2]*u.deg, dec=[3, 4]*u.deg, distance=[5, 6]*u.kpc)
    i4 = ICRS(ra=[1, 2]*u.deg, dec=[3, 4]*u.deg, distance=[4, 5]*u.kpc)

    sep3d = i3.separation_3d(i4)
    assert_allclose(sep3d.to(u.kpc), np.array([1, 1])*u.kpc)

    # check that it works even with velocities
    i5 = ICRS(ra=[1, 2]*u.deg, dec=[3, 4]*u.deg, distance=[5, 6]*u.kpc,
              pm_ra_cosdec=[1, 2]*u.mas/u.yr, pm_dec=[3, 4]*u.mas/u.yr,
              radial_velocity=[5, 6]*u.km/u.s)
    i6 = ICRS(ra=[1, 2]*u.deg, dec=[3, 4]*u.deg, distance=[7, 8]*u.kpc,
              pm_ra_cosdec=[1, 2]*u.mas/u.yr, pm_dec=[3, 4]*u.mas/u.yr,
              radial_velocity=[5, 6]*u.km/u.s)

    sep3d = i5.separation_3d(i6)
    assert_allclose(sep3d.to(u.kpc), np.array([2, 2])*u.kpc)

    # 3d separations of dimensionless distances should still work
    i7 = ICRS(ra=1*u.deg, dec=2*u.deg, distance=3*u.one)
    i8 = ICRS(ra=1*u.deg, dec=2*u.deg, distance=4*u.one)
    sep3d = i7.separation_3d(i8)
    assert_allclose(sep3d, 1*u.one)

    # but should fail with non-dimensionless
    with pytest.raises(ValueError):
        i7.separation_3d(i3)
Exemplo n.º 5
0
def test_sep():
    from astropy.coordinates.builtin_frames import ICRS

    i1 = ICRS(ra=0*u.deg, dec=1*u.deg)
    i2 = ICRS(ra=0*u.deg, dec=2*u.deg)

    sep = i1.separation(i2)
    assert sep.deg == 1

    i3 = ICRS(ra=[1, 2]*u.deg, dec=[3, 4]*u.deg, distance=[5, 6]*u.kpc)
    i4 = ICRS(ra=[1, 2]*u.deg, dec=[3, 4]*u.deg, distance=[4, 5]*u.kpc)

    sep3d = i3.separation_3d(i4)
    assert_allclose(sep3d.to(u.kpc), np.array([1, 1])*u.kpc)

    # check that it works even with velocities
    i5 = ICRS(ra=[1, 2]*u.deg, dec=[3, 4]*u.deg, distance=[5, 6]*u.kpc,
              pm_ra_cosdec=[1, 2]*u.mas/u.yr, pm_dec=[3, 4]*u.mas/u.yr,
              radial_velocity=[5, 6]*u.km/u.s)
    i6 = ICRS(ra=[1, 2]*u.deg, dec=[3, 4]*u.deg, distance=[7, 8]*u.kpc,
              pm_ra_cosdec=[1, 2]*u.mas/u.yr, pm_dec=[3, 4]*u.mas/u.yr,
              radial_velocity=[5, 6]*u.km/u.s)

    sep3d = i5.separation_3d(i6)
    assert_allclose(sep3d.to(u.kpc), np.array([2, 2])*u.kpc)
Exemplo n.º 6
0
def test_frame_api():
    from astropy.coordinates.representation import SphericalRepresentation, \
                                 UnitSphericalRepresentation
    from astropy.coordinates.builtin_frames import ICRS, FK5
    # <--------------------Reference Frame/"Low-level" classes--------------------->
    # The low-level classes have a dual role: they act as specifiers of coordinate
    # frames and they *may* also contain data as one of the representation objects,
    # in which case they are the actual coordinate objects themselves.

    # They can always accept a representation as a first argument
    icrs = ICRS(UnitSphericalRepresentation(lon=8 * u.hour, lat=5 * u.deg))

    # which is stored as the `data` attribute
    assert icrs.data.lat == 5 * u.deg
    assert icrs.data.lon == 8 * u.hourangle

    # Frames that require additional information like equinoxs or obstimes get them
    # as keyword parameters to the frame constructor.  Where sensible, defaults are
    # used. E.g., FK5 is almost always J2000 equinox
    fk5 = FK5(UnitSphericalRepresentation(lon=8 * u.hour, lat=5 * u.deg))
    J2000 = time.Time('J2000')
    fk5_2000 = FK5(UnitSphericalRepresentation(lon=8 * u.hour, lat=5 * u.deg),
                   equinox=J2000)
    assert fk5.equinox == fk5_2000.equinox

    # the information required to specify the frame is immutable
    J2001 = time.Time('J2001')
    with pytest.raises(AttributeError):
        fk5.equinox = J2001

    # Similar for the representation data.
    with pytest.raises(AttributeError):
        fk5.data = UnitSphericalRepresentation(lon=8 * u.hour, lat=5 * u.deg)

    # There is also a class-level attribute that lists the attributes needed to
    # identify the frame.  These include attributes like `equinox` shown above.
    assert all(nm in ('equinox', 'obstime')
               for nm in fk5.get_frame_attr_names())

    # the result of `get_frame_attr_names` is called for particularly in  the
    # high-level class (discussed below) to allow round-tripping between various
    # frames.  It is also part of the public API for other similar developer /
    # advanced users' use.

    # The actual position information is accessed via the representation objects
    assert_allclose(icrs.represent_as(SphericalRepresentation).lat, 5 * u.deg)
    # shorthand for the above
    assert_allclose(icrs.spherical.lat, 5 * u.deg)
    assert icrs.cartesian.z.value > 0

    # Many frames have a "default" representation, the one in which they are
    # conventionally described, often with a special name for some of the
    # coordinates. E.g., most equatorial coordinate systems are spherical with RA and
    # Dec. This works simply as a shorthand for the longer form above

    assert_allclose(icrs.dec, 5 * u.deg)
    assert_allclose(fk5.ra, 8 * u.hourangle)

    assert icrs.representation_type == SphericalRepresentation

    # low-level classes can also be initialized with names valid for that representation
    # and frame:
    icrs_2 = ICRS(ra=8 * u.hour, dec=5 * u.deg, distance=1 * u.kpc)
    assert_allclose(icrs.ra, icrs_2.ra)

    # and these are taken as the default if keywords are not given:
    # icrs_nokwarg = ICRS(8*u.hour, 5*u.deg, distance=1*u.kpc)
    # assert icrs_nokwarg.ra == icrs_2.ra and icrs_nokwarg.dec == icrs_2.dec

    # they also are capable of computing on-sky or 3d separations from each other,
    # which will be a direct port of the existing methods:
    coo1 = ICRS(ra=0 * u.hour, dec=0 * u.deg)
    coo2 = ICRS(ra=0 * u.hour, dec=1 * u.deg)
    # `separation` is the on-sky separation
    assert coo1.separation(coo2).degree == 1.0

    # while `separation_3d` includes the 3D distance information
    coo3 = ICRS(ra=0 * u.hour, dec=0 * u.deg, distance=1 * u.kpc)
    coo4 = ICRS(ra=0 * u.hour, dec=0 * u.deg, distance=2 * u.kpc)
    assert coo3.separation_3d(coo4).kpc == 1.0

    # The next example fails because `coo1` and `coo2` don't have distances
    with pytest.raises(ValueError):
        assert coo1.separation_3d(coo2).kpc == 1.0
Exemplo n.º 7
0
def test_frame_api():
    from astropy.coordinates.representation import SphericalRepresentation, \
                                 UnitSphericalRepresentation
    from astropy.coordinates.builtin_frames import ICRS, FK5
    # <--------------------Reference Frame/"Low-level" classes--------------------->
    # The low-level classes have a dual role: they act as specifiers of coordinate
    # frames and they *may* also contain data as one of the representation objects,
    # in which case they are the actual coordinate objects themselves.

    # They can always accept a representation as a first argument
    icrs = ICRS(UnitSphericalRepresentation(lon=8*u.hour, lat=5*u.deg))

    # which is stored as the `data` attribute
    assert icrs.data.lat == 5*u.deg
    assert icrs.data.lon == 8*u.hourangle

    # Frames that require additional information like equinoxs or obstimes get them
    # as keyword parameters to the frame constructor.  Where sensible, defaults are
    # used. E.g., FK5 is almost always J2000 equinox
    fk5 = FK5(UnitSphericalRepresentation(lon=8*u.hour, lat=5*u.deg))
    J2000 = time.Time('J2000')
    fk5_2000 = FK5(UnitSphericalRepresentation(lon=8*u.hour, lat=5*u.deg), equinox=J2000)
    assert fk5.equinox == fk5_2000.equinox

    # the information required to specify the frame is immutable
    J2001 = time.Time('J2001')
    with raises(AttributeError):
        fk5.equinox = J2001

    # Similar for the representation data.
    with raises(AttributeError):
        fk5.data = UnitSphericalRepresentation(lon=8*u.hour, lat=5*u.deg)

    # There is also a class-level attribute that lists the attributes needed to
    # identify the frame.  These include attributes like `equinox` shown above.
    assert all(nm in ('equinox', 'obstime') for nm in fk5.get_frame_attr_names())

    # the result of `get_frame_attr_names` is called for particularly in  the
    # high-level class (discussed below) to allow round-tripping between various
    # frames.  It is also part of the public API for other similar developer /
    # advanced users' use.

    # The actual position information is accessed via the representation objects
    assert_allclose(icrs.represent_as(SphericalRepresentation).lat, 5*u.deg)
    # shorthand for the above
    assert_allclose(icrs.spherical.lat, 5*u.deg)
    assert icrs.cartesian.z.value > 0

    # Many frames have a "default" representation, the one in which they are
    # conventionally described, often with a special name for some of the
    # coordinates. E.g., most equatorial coordinate systems are spherical with RA and
    # Dec. This works simply as a shorthand for the longer form above

    assert_allclose(icrs.dec, 5*u.deg)
    assert_allclose(fk5.ra, 8*u.hourangle)

    assert icrs.representation_type == SphericalRepresentation

    # low-level classes can also be initialized with names valid for that representation
    # and frame:
    icrs_2 = ICRS(ra=8*u.hour, dec=5*u.deg, distance=1*u.kpc)
    assert_allclose(icrs.ra, icrs_2.ra)

    # and these are taken as the default if keywords are not given:
    # icrs_nokwarg = ICRS(8*u.hour, 5*u.deg, distance=1*u.kpc)
    # assert icrs_nokwarg.ra == icrs_2.ra and icrs_nokwarg.dec == icrs_2.dec

    # they also are capable of computing on-sky or 3d separations from each other,
    # which will be a direct port of the existing methods:
    coo1 = ICRS(ra=0*u.hour, dec=0*u.deg)
    coo2 = ICRS(ra=0*u.hour, dec=1*u.deg)
    # `separation` is the on-sky separation
    assert coo1.separation(coo2).degree == 1.0

    # while `separation_3d` includes the 3D distance information
    coo3 = ICRS(ra=0*u.hour, dec=0*u.deg, distance=1*u.kpc)
    coo4 = ICRS(ra=0*u.hour, dec=0*u.deg, distance=2*u.kpc)
    assert coo3.separation_3d(coo4).kpc == 1.0

    # The next example fails because `coo1` and `coo2` don't have distances
    with raises(ValueError):
        assert coo1.separation_3d(coo2).kpc == 1.0