Exemplo n.º 1
0
def test_deprecated_hat_kernel():

    # 'MexicanHat' was deprecated as a name for the models which are now
    # 'RickerWavelet'. This test ensures that the models are correctly
    # deprecated.

    with pytest.warns(AstropyDeprecationWarning):
        models.MexicanHat1D()

    with pytest.warns(AstropyDeprecationWarning):
        models.MexicanHat2D()
Exemplo n.º 2
0
def fit_mex_hat_1d(data):
    """Fit a 1D Mexican Hat function to the data."""
    ldata = len(data)
    x = np.arange(ldata)
    fixed_pars = {"x_0": True}

    # Fit model to data
    fit = fitting.LevMarLSQFitter()

    # Mexican Hat 1D
    model = models.MexicanHat1D(amplitude=np.max(data),
                                x_0=ldata/2, sigma=2., fixed=fixed_pars)
    with warnings.catch_warnings():
        # Ignore model linearity warning from the fitter
        warnings.simplefilter('ignore')
        results = fit(model, x, data)

    # previous yield amp, ycenter, xcenter, sigma, offset
    return results
Exemplo n.º 3
0
# the astropy.modeling.Model registry. For now, we directly
# store hard-coded instances.

import astropy.modeling.models as models
from astropy.modeling import Parameter, Fittable1DModel
from astropy.modeling.polynomial import PolynomialModel

registry = {
    'Gaussian1D':
    models.Gaussian1D(1.0, 1.0, 1.0),
    'GaussianAbsorption1D':
    models.GaussianAbsorption1D(1.0, 1.0, 1.0),
    'Lorentz1D':
    models.Lorentz1D(1.0, 1.0, 1.0),
    'MexicanHat1D':
    models.MexicanHat1D(1.0, 1.0, 1.0),
    'Trapezoid1D':
    models.Trapezoid1D(1.0, 1.0, 1.0, 1.0),
    'Moffat1D':
    models.Moffat1D(1.0, 1.0, 1.0, 1.0),
    'ExponentialCutoffPowerLaw1D':
    models.ExponentialCutoffPowerLaw1D(1.0, 1.0, 1.0, 1.0),
    'BrokenPowerLaw1D':
    models.BrokenPowerLaw1D(1.0, 1.0, 1.0, 1.0),
    'LogParabola1D':
    models.LogParabola1D(1.0, 1.0, 1.0, 1.0),
    'PowerLaw1D':
    models.PowerLaw1D(1.0, 1.0, 1.0),
    'Linear1D':
    models.Linear1D(1.0, 0.0),
    'Const1D':
Exemplo n.º 4
0
def test_single_peak_estimate():
    """
    Single Peak fit.
    """

    # Create the spectrum
    x_single, y_single = single_peak()
    s_single = Spectrum1D(flux=y_single*u.Jy, spectral_axis=x_single*u.um)

    #
    # Estimate parameter Gaussian1D
    #

    g_init = estimate_line_parameters(s_single, models.Gaussian1D())

    assert np.isclose(g_init.amplitude.value, 3.354169257846847)
    assert np.isclose(g_init.mean.value, 6.218588636687762)
    assert np.isclose(g_init.stddev.value, 1.6339001193853715)

    assert g_init.amplitude.unit == u.Jy
    assert g_init.mean.unit == u.um
    assert g_init.stddev.unit == u.um

    #
    # Estimate parameter Lorentz1D
    #

    g_init = estimate_line_parameters(s_single, models.Lorentz1D())

    assert np.isclose(g_init.amplitude.value, 3.354169257846847)
    assert np.isclose(g_init.x_0.value, 6.218588636687762)
    assert np.isclose(g_init.fwhm.value, 1.6339001193853715)

    assert g_init.amplitude.unit == u.Jy
    assert g_init.x_0.unit == u.um
    assert g_init.fwhm.unit == u.um

    #
    # Estimate parameter Voigt1D
    #

    g_init = estimate_line_parameters(s_single, models.Voigt1D())

    assert np.isclose(g_init.amplitude_L.value, 3.354169257846847)
    assert np.isclose(g_init.x_0.value, 6.218588636687762)
    assert np.isclose(g_init.fwhm_L.value, 1.1553418541989058)
    assert np.isclose(g_init.fwhm_G.value, 1.1553418541989058)

    assert g_init.amplitude_L.unit == u.Jy
    assert g_init.x_0.unit == u.um
    assert g_init.fwhm_L.unit == u.um
    assert g_init.fwhm_G.unit == u.um


    #
    # Estimate parameter MexicanHat1D
    #
    mh = models.MexicanHat1D()
    estimators = {
        'amplitude': lambda s: max(s.flux),
        'x_0': lambda s: centroid(s, region=None),
        'stddev': lambda s: fwhm(s)
    }
    mh._constraints['parameter_estimator'] = estimators

    g_init = estimate_line_parameters(s_single, mh)

    assert np.isclose(g_init.amplitude.value, 3.354169257846847)
    assert np.isclose(g_init.x_0.value, 6.218588636687762)
    assert np.isclose(g_init.stddev.value, 1.6339001193853715)

    assert g_init.amplitude.unit == u.Jy
    assert g_init.x_0.unit == u.um
    assert g_init.stddev.unit == u.um
Exemplo n.º 5
0
 def __init__(self, width, **kwargs):
     amplitude = 1.0 / (np.sqrt(2 * np.pi) * width**3)
     self._model = models.MexicanHat1D(amplitude, 0, width)
     self._default_size = _round_up_to_odd_integer(8 * width)
     super().__init__(**kwargs)
     self._truncation = np.abs(self._array.sum() / self._array.size)
Exemplo n.º 6
0
def fit_mex_hat_1d(data, sigma_factor=0, center_at=None, weighted=False):
    """Fit a 1D Mexican Hat function to the data.

    Parameters
    ----------

    data: 2D float array
        should be a 2d array, the initial center is used to estimate
        the fit center
    sigma_factor: float (optional)
        If sigma_factor > 0 then clipping will be performed
        on the data during the model fit
    center_at: float or None
        None by default, set to value to use as center
    weighted: bool
        if weighted is True, then weight the values by basic
        uncertainty hueristic

    Returns
    -------
    The the fit model for mexican hat 1D function
    """
    ldata = len(data)
    if center_at:
        x0 = 0
    else:
        x0 = int(ldata / 2.)

    # assumes negligable background
    if weighted:
        z = np.nan_to_num(1. / np.sqrt(data))  # use as weight

    x = np.arange(ldata)
    fixed_pars = {"x_0": True}

    # Initialize the fitter
    fitter = fitting.LevMarLSQFitter()
    if sigma_factor > 0:
        fit = fitting.FittingWithOutlierRemoval(fitter,
                                                sigma_clip,
                                                niter=3,
                                                sigma=sigma_factor)
    else:
        fit = fitter

    # Mexican Hat 1D + constant
    model = (models.MexicanHat1D(
        amplitude=np.max(data), x_0=x0, sigma=2., fixed=fixed_pars) +
             models.Polynomial1D(c0=data.min(), degree=0))

    with warnings.catch_warnings():
        # Ignore model linearity warning from the fitter
        warnings.simplefilter('ignore')
        if weighted:
            results = fit(model, x, data, weights=z)
        else:
            results = fit(model, x, data)

    # previous yield amp, ycenter, xcenter, sigma, offset
    if sigma_factor > 0:
        return results[1]
    else:
        return results