Exemplo n.º 1
0
def test_median_absolute_deviation_masked():
    # Based on the changes introduces in #4658

    # normal masked arrays without masked values are handled like normal
    # numpy arrays
    array = np.ma.array([1, 2, 3])
    assert funcs.median_absolute_deviation(array) == 1

    # masked numpy arrays return something different (rank 0 masked array)
    # but one can still compare it without np.all!
    array = np.ma.array([1, 4, 3], mask=[0, 1, 0])
    assert funcs.median_absolute_deviation(array) == 1
    # Just cross check if that's identical to the function on the unmasked
    # values only
    assert funcs.median_absolute_deviation(array) == (
        funcs.median_absolute_deviation(array[~array.mask]))

    # Multidimensional masked array
    array = np.ma.array([[1, 4], [2, 2]], mask=[[1, 0], [0, 0]])
    funcs.median_absolute_deviation(array)
    assert funcs.median_absolute_deviation(array) == 0
    # Just to compare it with the data without mask:
    assert funcs.median_absolute_deviation(array.data) == 0.5

    # And check if they are also broadcasted correctly
    np.testing.assert_array_equal(
        funcs.median_absolute_deviation(array, axis=0).data, [0, 1])
    np.testing.assert_array_equal(
        funcs.median_absolute_deviation(array, axis=1).data, [0, 0])
Exemplo n.º 2
0
def test_median_absolute_deviation_masked():
    # Based on the changes introduces in #4658

    # normal masked arrays without masked values are handled like normal
    # numpy arrays
    array = np.ma.array([1, 2, 3])
    assert funcs.median_absolute_deviation(array) == 1

    # masked numpy arrays return something different (rank 0 masked array)
    # but one can still compare it without np.all!
    array = np.ma.array([1, 4, 3], mask=[0, 1, 0])
    assert funcs.median_absolute_deviation(array) == 1
    # Just cross check if that's identical to the function on the unmasked
    # values only
    assert funcs.median_absolute_deviation(array) == (
        funcs.median_absolute_deviation(array[~array.mask]))

    # Multidimensional masked array
    array = np.ma.array([[1, 4], [2, 2]], mask=[[1, 0], [0, 0]])
    funcs.median_absolute_deviation(array)
    assert funcs.median_absolute_deviation(array) == 0
    # Just to compare it with the data without mask:
    assert funcs.median_absolute_deviation(array.data) == 0.5

    # And check if they are also broadcasted correctly
    np.testing.assert_array_equal(
        funcs.median_absolute_deviation(array, axis=0).data, [0, 1])
    np.testing.assert_array_equal(
        funcs.median_absolute_deviation(array, axis=1).data, [0, 0])
Exemplo n.º 3
0
def test_median_absolute_deviation_nans():
    array = np.array([[1, 4, 3, np.nan],
                      [2, 5, np.nan, 4]])
    assert_equal(funcs.median_absolute_deviation(array, func=np.nanmedian,
                                                 axis=1), [1, 1])

    array = np.ma.masked_invalid(array)
    assert funcs.median_absolute_deviation(array) == 1
Exemplo n.º 4
0
def test_median_absolute_deviation_nans():
    array = np.array([[1, 4, 3, np.nan], [2, 5, np.nan, 4]])
    assert_equal(
        funcs.median_absolute_deviation(array, func=np.nanmedian, axis=1),
        [1, 1])

    array = np.ma.masked_invalid(array)
    assert funcs.median_absolute_deviation(array) == 1
Exemplo n.º 5
0
def test_median_absolute_deviation_quantity():
    # Based on the changes introduces in #4658

    # Just a small test that this function accepts Quantities and returns a
    # quantity
    a = np.array([1, 16, 5]) * u.m
    mad = funcs.median_absolute_deviation(a)
    # Check for the correct unit and that the result is identical to the
    # result without units.
    assert mad.unit == a.unit
    assert mad.value == funcs.median_absolute_deviation(a.value)
Exemplo n.º 6
0
def test_median_absolute_deviation_nans_masked():
    """
    Regression test to ensure ignore_nan=True gives same results for
    ndarray and masked arrays that contain +/-inf.
    """

    data1 = np.array([1., np.nan, 2, np.inf])
    data2 = np.ma.masked_array(data1, mask=False)
    mad1 = funcs.median_absolute_deviation(data1, ignore_nan=True)
    mad2 = funcs.median_absolute_deviation(data2, ignore_nan=True)
    assert_equal(mad1, mad2)
Exemplo n.º 7
0
def test_median_absolute_deviation_quantity():
    # Based on the changes introduces in #4658

    # Just a small test that this function accepts Quantities and returns a
    # quantity
    a = np.array([1, 16, 5]) * u.m
    mad = funcs.median_absolute_deviation(a)
    # Check for the correct unit and that the result is identical to the
    # result without units.
    assert mad.unit == a.unit
    assert mad.value == funcs.median_absolute_deviation(a.value)
Exemplo n.º 8
0
    def aperture_mask(self, snr_threshold=5):
        """Returns an aperture photometry mask.

        snr_threshold : float
            Background detection threshold.
        """
        # Find the pixels that are above the threshold in the median flux image
        median = self.median_flux()
        mad = median_absolute_deviation(median[np.isfinite(median)])
        mad_cut = 1.4826 * mad * snr_threshold  # 1.4826 turns MAD into STDEV for a Gaussian

        region = np.where(median > mad_cut, 1, 0)
        # Label all contiguous regions above the threshold
        labels = scipy.ndimage.label(region)[0]
        # Central pixel coordinate
        centralpix = [1 + median.shape[0] // 2,
                      1 + median.shape[1] // 2]  # "//" is the integer division

        # find brightest pix within margin of central pix
        margin = 4
        central_img = median[centralpix[0] - margin: centralpix[0] + margin,
                             centralpix[1] - margin: centralpix[1] + margin]
        # unravel_index converts indices into a tuple of coordinate arrays
        brightestpix = np.unravel_index(central_img.argmax(), central_img.shape)
        bpixy, bpixx = brightestpix

        # Which label corresponds to the brightest pixel?
        regnum = labels[centralpix[0] - 4 + bpixy, centralpix[1] - 4 + bpixx]
        if regnum == 0:  # No pixels above threshold?
            print('WARNING, no star was found in light curve, \
                   {} light curve will be junk!'.format(fn))

        aperture_mask = labels == regnum
        return aperture_mask
Exemplo n.º 9
0
    def aperture_mask(self, snr_threshold=5):
        """Returns an aperture photometry mask.

        snr_threshold : float
            Background detection threshold.
        """
        # Find the pixels that are above the threshold in the median flux image
        median = self.median_flux()
        mad = median_absolute_deviation(median[np.isfinite(median)])
        mad_cut = 1.4826 * mad * snr_threshold  # 1.4826 turns MAD into STDEV for a Gaussian

        region = np.where(median > mad_cut, 1, 0)
        # Label all contiguous regions above the threshold
        labels = scipy.ndimage.label(region)[0]
        # Central pixel coordinate
        centralpix = [1 + median.shape[0] // 2,
                      1 + median.shape[1] // 2]  # "//" is the integer division

        # find brightest pix within margin of central pix
        margin = 4
        central_img = median[centralpix[0] - margin:centralpix[0] + margin,
                             centralpix[1] - margin:centralpix[1] + margin]
        # unravel_index converts indices into a tuple of coordinate arrays
        brightestpix = np.unravel_index(central_img.argmax(),
                                        central_img.shape)
        bpixy, bpixx = brightestpix

        # Which label corresponds to the brightest pixel?
        regnum = labels[centralpix[0] - 4 + bpixy, centralpix[1] - 4 + bpixx]
        if regnum == 0:  # No pixels above threshold?
            print('WARNING, no star was found in light curve, \
                   {} light curve will be junk!'.format(fn))

        aperture_mask = labels == regnum
        return aperture_mask
Exemplo n.º 10
0
def test_median_absolute_deviation():
    with NumpyRNGContext(12345):
        # test that it runs
        randvar = np.random.randn(10000)
        mad = funcs.median_absolute_deviation(randvar)

        # test whether an array is returned if an axis is used
        randvar = randvar.reshape((10, 1000))
        mad = funcs.median_absolute_deviation(randvar, axis=1)
        assert len(mad) == 10
        assert mad.size < randvar.size
        mad = funcs.median_absolute_deviation(randvar, axis=0)
        assert len(mad) == 1000
        assert mad.size < randvar.size
        # Test some actual values in a 3 dimensional array
        x = np.arange(3 * 4 * 5)
        a = np.array([sum(x[:i + 1]) for i in range(len(x))]).reshape(3, 4, 5)
        mad = funcs.median_absolute_deviation(a)
        assert mad == 389.5
        mad = funcs.median_absolute_deviation(a, axis=0)
        assert_allclose(mad, [[210., 230., 250., 270., 290.],
                              [310., 330., 350., 370., 390.],
                              [410., 430., 450., 470., 490.],
                              [510., 530., 550., 570., 590.]])
        mad = funcs.median_absolute_deviation(a, axis=1)
        assert_allclose(mad, [[27.5, 32.5, 37.5, 42.5, 47.5],
                              [127.5, 132.5, 137.5, 142.5, 147.5],
                              [227.5, 232.5, 237.5, 242.5, 247.5]])
        mad = funcs.median_absolute_deviation(a, axis=2)
        assert_allclose(mad, [[3., 8., 13., 18.],
                              [23., 28., 33., 38.],
                              [43., 48., 53., 58.]])
Exemplo n.º 11
0
def test_median_absolute_deviation():
    with NumpyRNGContext(12345):
        # test that it runs
        randvar = np.random.randn(10000)
        mad = funcs.median_absolute_deviation(randvar)

        # test whether an array is returned if an axis is used
        randvar = randvar.reshape((10, 1000))
        mad = funcs.median_absolute_deviation(randvar, axis=1)
        assert len(mad) == 10
        assert mad.size < randvar.size
        mad = funcs.median_absolute_deviation(randvar, axis=0)
        assert len(mad) == 1000
        assert mad.size < randvar.size
        # Test some actual values in a 3 dimensional array
        x = np.arange(3 * 4 * 5)
        a = np.array([sum(x[:i + 1]) for i in range(len(x))]).reshape(3, 4, 5)
        mad = funcs.median_absolute_deviation(a)
        assert mad == 389.5
        mad = funcs.median_absolute_deviation(a, axis=0)
        assert_allclose(
            mad,
            [[210., 230., 250., 270., 290.], [310., 330., 350., 370., 390.],
             [410., 430., 450., 470., 490.], [510., 530., 550., 570., 590.]])
        mad = funcs.median_absolute_deviation(a, axis=1)
        assert_allclose(mad, [[27.5, 32.5, 37.5, 42.5, 47.5],
                              [127.5, 132.5, 137.5, 142.5, 147.5],
                              [227.5, 232.5, 237.5, 242.5, 247.5]])
        mad = funcs.median_absolute_deviation(a, axis=2)
        assert_allclose(
            mad,
            [[3., 8., 13., 18.], [23., 28., 33., 38.], [43., 48., 53., 58.]])
Exemplo n.º 12
0
    def aperture_mask(self, snr_threshold=5, margin=4):
        """Returns an aperture photometry mask.

        Parameters
        ----------
        snr_threshold : float
            Background detection threshold.
        """

        # Find the pixels that are above the threshold in the median flux image
        median = np.nanmedian(self.flux, axis=0)
        mad = median_absolute_deviation(median[np.isfinite(median)])
        # 1.4826 turns MAD into STDEV for a Gaussian
        mad_cut = 1.4826 * mad * snr_threshold

        region = np.where(median > mad_cut, 1, 0)
        # Label all contiguous regions above the threshold
        labels = scipy.ndimage.label(region)[0]
        # Central pixel coordinate
        centralpix = [1 + median.shape[0] // 2, 1 + median.shape[1] // 2]

        # find brightest pix within margin of central pix
        central_img = median[centralpix[0] - margin:centralpix[0] + margin,
                             centralpix[1] - margin:centralpix[1] + margin]
        # unravel_index converts indices into a tuple of coordinate arrays
        brightestpix = np.unravel_index(central_img.argmax(),
                                        central_img.shape)
        bpixy, bpixx = brightestpix

        # Which label corresponds to the brightest pixel?
        regnum = labels[centralpix[0] - margin + bpixy,
                        centralpix[1] - margin + bpixx]
        if regnum == 0:
            warnings.warn(
                'No star were found in light curve {}, '
                'light curve will be junk!'.format(self.path), UserWarning)

        aperture_mask = labels == regnum

        return aperture_mask
Exemplo n.º 13
0
def extract_lightcurve(fn, qual_cut=False, toss_resat=True,
                       bg_cut=5, skip=None):
    if skip is None:
        skip = 0

    # Read the data into time, fluxarr, and quality
    with fits.open(fn) as f:
        time = f[1].data['TIME'][skip:] - f[1].data['TIME'][0]
        fluxarr = f[1].data['FLUX'][skip:]
        quality = f[1].data['QUALITY'][skip:]

    # Remove data that does not meet the quality criteria
    if qual_cut:
        time = time[quality == 0]
        fluxarr = fluxarr[quality == 0, :, :]
    elif toss_resat:
        # data the cadences where there is a wheel
        # resetuation event
        time = time[quality != 32800]
        fluxarr = fluxarr[quality != 32800, :, :]

    # fix dodgy data: the C0 data release included zeros
    # this will be changed later but we need this
    # fix for now
    fluxarr[fluxarr == 0] = np.nan

    # subtract background
    flux_b = median_subtract(fluxarr)

    # create a median image to calculate where
    # the pixels to use are
    flatim = np.nanmedian(flux_b, axis=0)

    # find pixels that are X MAD above the median
    vals = flatim[np.isfinite(flatim)].flatten()
    # 1.4826 turns a MAD into a STDEV for a Gaussian
    mad_cut = 1.4826 * median_absolute_deviation(vals) * bg_cut

    region = np.where(flatim > mad_cut, 1, 0)
    lab = scipy.ndimage.label(region)[0]

    # find the central pixel ("//" is the integer division)
    imshape = np.shape(flatim)
    centralpix = [1 + imshape[0] // 2, 1 + imshape[1] // 2]

    # find brightest pix within 9x9 of central pix
    centflatim = flatim[centralpix[0] - 4: centralpix[0] + 4,
                        centralpix[1] - 4: centralpix[1] + 4]
    flatimfix = np.where(np.isfinite(centflatim), centflatim, 0)
    # unravel_index converts indices into a tuple of coordinate arrays
    brightestpix = np.unravel_index(flatimfix.argmax(), centflatim.shape)
    bpixy, bpixx = brightestpix

    regnum = lab[centralpix[0] - 4 + bpixy, centralpix[1] - 4 + bpixx]
    if regnum == 0:
        print('WARNING, no star was found in light curve, \
               {} light curve will be junk!'.format(fn))

    # Initialize return values
    lc = np.zeros_like(time)
    xbar = np.zeros_like(time)
    ybar = np.zeros_like(time)

    # there is a loop that performs the aperture photometry
    # lets also calcualte the moments of the image

    # make a rectangular aperture for the moments thing
    ymin = np.min(np.where(lab == regnum)[0])
    ymax = np.max(np.where(lab == regnum)[0])
    xmin = np.min(np.where(lab == regnum)[1])
    xmax = np.max(np.where(lab == regnum)[1])

    momlims = [ymin, ymax + 1, xmin, xmax + 1]

    for i, fl in enumerate(fluxarr):
        lc[i] = np.sum(fl[lab == regnum])
        momim = fl[momlims[0]:momlims[1],
                   momlims[2]:momlims[3]]
        momim[~np.isfinite(momim)] == 0.0
        xbar[i], ybar[i], cov = intertial_axis(momim)

    return (time, lc, xbar - np.mean(xbar), ybar - np.mean(ybar), regnum)
Exemplo n.º 14
0
def test_median_absolute_deviation_multidim_axis():
    array = np.ones((5, 4, 3)) * np.arange(5)[:, np.newaxis, np.newaxis]
    assert_equal(funcs.median_absolute_deviation(array, axis=(1, 2)),
                 np.zeros(5))
    assert_equal(funcs.median_absolute_deviation(array, axis=np.array([1, 2])),
                 np.zeros(5))
Exemplo n.º 15
0
def test_median_absolute_deviation_multidim_axis():
    array = np.ones((5, 4, 3)) * np.arange(5)[:, np.newaxis, np.newaxis]
    mad1 = funcs.median_absolute_deviation(array, axis=(1, 2))
    mad2 = funcs.median_absolute_deviation(array, axis=(2, 1))
    assert_equal(mad1, np.zeros(5))
    assert_equal(mad1, mad2)
Exemplo n.º 16
0
def test_median_absolute_deviation_multidim_axis():
    array = np.ones((5, 4, 3)) * np.arange(5)[:, np.newaxis, np.newaxis]
    assert_equal(funcs.median_absolute_deviation(array, axis=(1, 2)),
                 np.zeros(5))
    assert_equal(funcs.median_absolute_deviation(
        array, axis=np.array([1, 2])), np.zeros(5))
Exemplo n.º 17
0
def extract_lightcurve(fn,
                       qual_cut=False,
                       toss_resat=True,
                       bg_cut=5,
                       skip=None):
    if skip is None:
        skip = 0

    # Read the data into time, fluxarr, and quality
    with fits.open(fn) as f:
        time = f[1].data['TIME'][skip:] - f[1].data['TIME'][0]
        fluxarr = f[1].data['FLUX'][skip:]
        quality = f[1].data['QUALITY'][skip:]

    # Remove data that does not meet the quality criteria
    if qual_cut:
        time = time[quality == 0]
        fluxarr = fluxarr[quality == 0, :, :]
    elif toss_resat:
        # data the cadences where there is a wheel
        # resetuation event
        time = time[quality != 32800]
        fluxarr = fluxarr[quality != 32800, :, :]

    # fix dodgy data: the C0 data release included zeros
    # this will be changed later but we need this
    # fix for now
    fluxarr[fluxarr == 0] = np.nan

    # subtract background
    flux_b = median_subtract(fluxarr)

    # create a median image to calculate where
    # the pixels to use are
    flatim = np.nanmedian(flux_b, axis=0)

    # find pixels that are X MAD above the median
    vals = flatim[np.isfinite(flatim)].flatten()
    # 1.4826 turns a MAD into a STDEV for a Gaussian
    mad_cut = 1.4826 * median_absolute_deviation(vals) * bg_cut

    region = np.where(flatim > mad_cut, 1, 0)
    lab = scipy.ndimage.label(region)[0]

    # find the central pixel ("//" is the integer division)
    imshape = np.shape(flatim)
    centralpix = [1 + imshape[0] // 2, 1 + imshape[1] // 2]

    # find brightest pix within 9x9 of central pix
    centflatim = flatim[centralpix[0] - 4:centralpix[0] + 4,
                        centralpix[1] - 4:centralpix[1] + 4]
    flatimfix = np.where(np.isfinite(centflatim), centflatim, 0)
    # unravel_index converts indices into a tuple of coordinate arrays
    brightestpix = np.unravel_index(flatimfix.argmax(), centflatim.shape)
    bpixy, bpixx = brightestpix

    regnum = lab[centralpix[0] - 4 + bpixy, centralpix[1] - 4 + bpixx]
    if regnum == 0:
        print('WARNING, no star was found in light curve, \
               {} light curve will be junk!'.format(fn))

    # Initialize return values
    lc = np.zeros_like(time)
    xbar = np.zeros_like(time)
    ybar = np.zeros_like(time)

    # there is a loop that performs the aperture photometry
    # lets also calcualte the moments of the image

    # make a rectangular aperture for the moments thing
    ymin = np.min(np.where(lab == regnum)[0])
    ymax = np.max(np.where(lab == regnum)[0])
    xmin = np.min(np.where(lab == regnum)[1])
    xmax = np.max(np.where(lab == regnum)[1])

    momlims = [ymin, ymax + 1, xmin, xmax + 1]

    for i, fl in enumerate(fluxarr):
        lc[i] = np.sum(fl[lab == regnum])
        momim = fl[momlims[0]:momlims[1], momlims[2]:momlims[3]]
        momim[~np.isfinite(momim)] == 0.0
        xbar[i], ybar[i], cov = intertial_axis(momim)

    return (time, lc, xbar - np.mean(xbar), ybar - np.mean(ybar), regnum)