def __init__(self, nu_max: DistLike, log_tau: DistLike, phi: DistLike = None): super().__init__(nu_max, log_tau=log_tau, phi=phi) self.units = { "a_cz": u.microhertz**3, "tau_cz": u.megasecond, "phi_cz": u.rad, } self.symbols = { "a_cz": r"$a_\mathrm{BCZ}$", "tau_cz": r"$\tau_\mathrm{BCZ}$", "phi_cz": r"$\phi_\mathrm{BCZ}$", } # log units for k in ["a_cz", "tau_cz"]: log_k = f"log_{k}" self.units[log_k] = u.LogUnit(self.units[k]) self.symbols[log_k] = r"$\log\," + self.symbols[k][1:] log_numax = jnp.log10(distribution(nu_max).mean) # Rough guess of glitch params self.log_a: dist.Distribution = dist.Normal(-4.544 + 2.995 * log_numax, 0.52)
def __init__(self, nu_max: DistLike, log_tau: DistLike, phi: DistLike = None): super().__init__(nu_max, log_tau=log_tau, phi=phi) self.units = { "a_he": u.dimensionless_unscaled, "b_he": u.megasecond**2, "tau_he": u.megasecond, "phi_he": u.rad, } self.symbols = { "a_he": r"$a_\mathrm{He}$", "b_he": r"$b_\mathrm{He}$", "tau_he": r"$\tau_\mathrm{He}$", "phi_he": r"$\phi_\mathrm{He}$", } # log units for k in ["a_he", "b_he", "tau_he"]: log_k = f"log_{k}" self.units[log_k] = u.LogUnit(self.units[k]) self.symbols[log_k] = r"$\log\," + self.symbols[k][1:] log_numax = jnp.log10(distribution(nu_max).mean) # Attempt rough guess of glitch params self.log_a: dist.Distribution = dist.Normal(-2.119 + 0.005 * log_numax, 0.378) self.log_b: dist.Distribution = dist.Normal(0.024 - 1.811 * log_numax, 0.138)
def __init__(self, ): super().__init__() self.introduces_correlated_errors = False self.add_param( maskParameter( name="EFAC", units="", aliases=["T2EFAC", "TNEF"], description="A multiplication factor on" " the measured TOA uncertainties,", )) self.add_param( maskParameter( name="EQUAD", units="us", aliases=["T2EQUAD"], description="An error term added in " "quadrature to the scaled (by" " EFAC) TOA uncertainty.", )) self.add_param( maskParameter( name="TNEQ", units=u.LogUnit(physical_unit=u.second), description="An error term added in " "quadrature to the scaled (by" " EFAC) TOA uncertainty in " " the unit of log10(second).", )) self.covariance_matrix_funcs += [self.sigma_scaled_cov_matrix] self.scaled_toa_sigma_funcs += [self.scale_toa_sigma]
def __init__(self, ): super(ScaleToaError, self).__init__() self.category = 'scale_toa_error' self.add_param(p.maskParameter(name ='EFAC', units="", aliases=['T2EFAC', 'TNEF'], description="A multiplication factor on" \ " the measured TOA uncertainties,")) self.add_param(p.maskParameter(name='EQUAD', units="us",\ aliases=['T2EQUAD'], description="An error term added in " "quadrature to the scaled (by" " EFAC) TOA uncertainty.")) self.add_param(p.maskParameter(name='TNEQ', \ units=u.LogUnit(physical_unit=u.second),\ description="An error term added in " "quadrature to the scaled (by" " EFAC) TOA uncertainty in " " the unit of log10(second).")) self.covariance_matrix_funcs += [ self.sigma_scaled_cov_matrix, ] self.scaled_sigma_funcs += [ self.scale_sigma, ]
def __init__( self, nu_max: DistLike, delta_nu: DistLike, teff: Optional[DistLike] = None, epsilon: Optional[DistLike] = None, seed: int = 0, window_width: Union[str, float] = "full", ): super().__init__(nu_max, delta_nu, teff, epsilon, seed, window_width) self._prefix = "null" self._divider = "." units = { "log_k": u.LogUnit(u.dimensionless_unscaled), } symbols = {"log_k": r"$\log(k)$"} null_vars = ["nu", "nu_obs", "nu_bkg"] for var_name in null_vars: key = self._divider.join([self._prefix, var_name]) units[key] = self.units[var_name] symbols[key] = self.symbols[var_name] self.units.update(units) self.symbols.update(symbols)