Exemplo n.º 1
0
def run(strategy, explanation_score_name = "mat_score", prediction_score_name = "mato_score",
        show_me = False, test_problems = None, test_name = "spm", test_anlgs = None, test_trans = None):
    start_time = time.time()

    probs = prob_anlg_tran_new.get_probs(test_problems, test_name)

    for prob in probs:
        print(prob.name)

        # initialize cache
        jaccard.load_jaccard_cache(prob.name)
        asymmetric_jaccard.load_asymmetric_jaccard_cache(prob.name)

        # run strategy
        anlg_tran_data, pred_data, pred_d = strategy(prob,
                                                     explanation_score_name = explanation_score_name,
                                                     prediction_score_name = prediction_score_name,
                                                     test_anlgs = test_anlgs,
                                                     test_trans = test_trans)

        # save data
        prob.data = utils.save_data(prob, anlg_tran_data, pred_data, pred_d,
                                    "./data/" + test_name + "_" + strategy.__name__ + "_" + prediction_score_name + "_" + prob.name,
                                    show_me)

        # update cache
        jaccard.save_jaccard_cache(prob.name)
        asymmetric_jaccard.save_asymmetric_jaccard_cache(prob.name)

    # generate report
    report.create_report(probs, test_name + "_" + strategy.__name__ + "_" + prediction_score_name + "_")

    end_time = time.time()
    print(end_time - start_time)
Exemplo n.º 2
0
def run_raven_greedy(show_me=False, test_problems=None):

    start_time = time.time()

    print("run raven in greedy mode.")

    probs = prob_anlg_tran.get_probs(test_problems)

    for prob in probs:

        print(prob.name)

        jaccard.load_jaccard_cache(prob.name)
        asymmetric_jaccard.load_asymmetric_jaccard_cache(prob.name)

        anlgs = prob_anlg_tran.get_anlgs(prob)

        anlg_tran_data = []
        anlg_data = []
        for anlg in anlgs:
            # score all transformations given an analogy
            tran_data = run_prob_anlg(prob, anlg)
            anlg_tran_data.extend(tran_data)

            # optimize w.r.t. transformations for this analogy
            anlg_tran_d = utils.find_best(tran_data, "pat_score")
            anlg_data.append(anlg_tran_d)

        pred_data = []
        for anlg_d in anlg_data:
            # predict with an analogy, and score all options with the prediction
            anlg_pred_data = predict(prob, anlg_d)
            pred_data.extend(anlg_pred_data)

        # optimize w.r.t. options
        pred_d = utils.find_best(pred_data, "pat_score", "pato_score")

        # imaging
        save_image(prob, pred_d.get("pred"),
                   prob.options[pred_d.get("optn") - 1], "greedy", show_me)

        # data aggregation progression, TODO maybe save them as images
        for d in anlg_tran_data:
            del d["diff"]
        for d in anlg_data:
            del d["diff"]
        for d in pred_data:
            del d["diff"]
            del d["pred"]
        del pred_d["diff"]
        del pred_d["pred"]
        aggregation_progression = {
            "anlg_tran_data": anlg_tran_data,
            "anlg_data": anlg_data,
            "pred_data": pred_data,
            "pred_d": pred_d
        }
        with open("./data/greedy_" + prob.name + ".json", 'w+') as outfile:
            json.dump(aggregation_progression, outfile)
            outfile.close()

        # update cache
        jaccard.save_jaccard_cache(prob.name)
        asymmetric_jaccard.save_asymmetric_jaccard_cache(prob.name)

        prob.data = aggregation_progression

    # output report
    if test_problems is None:
        report.create_report(probs, "greedy_")

    end_time = time.time()
    print(end_time - start_time)