Exemplo n.º 1
0
Arquivo: run.py Projeto: we1l1n/atis
def main():
    """Main function that trains and/or evaluates a model."""
    params = interpret_args()

    # Prepare the dataset into the proper form.
    data = atis_data.ATISDataset(params)

    # Construct the model object.
    model_type = InteractionATISModel if params.interaction_level else ATISModel

    model = model_type(
        params,
        data.input_vocabulary,
        data.output_vocabulary,
        data.anonymizer if params.anonymize and params.anonymization_scoring else None)

    last_save_file = ""

    if params.train:
        last_save_file = train(model, data, params)
    if params.evaluate:
        evaluate(model, data, params, last_save_file)
    if params.interactive:
        interact(model, params, data.anonymizer, last_save_file)
    if params.attention:
        evaluate_attention(model, data, params, params.save_file)
Exemplo n.º 2
0
def main():
    """Main function that trains and/or evaluates a model."""
    params = interpret_args()

    # Prepare the dataset into the proper form.
    data = atis_data.ATISDataset(params)
    if params.new_version:
        #my_vocab = Vocabulary(params.interaction_train, params.interaction_valid)

        #pickle.dump(my_vocab, open("new_vocab_train", "wb"))
        my_vocab = pickle.load(open("new_vocab_train", "rb"))
        print(my_vocab.id2label)
        print(len(my_vocab))

        data.output_vocabulary = my_vocab
        #new_interaction_train = pickle.load(open("interactions_new_train", "rb"))
        #new_interaction_valid = pickle.load(open("interactions_new_valid", "rb"))
        #data.train_data.examples = new_interaction_train
        #data.valid_data.examples = new_interaction_valid
        transfer_dataset(data.valid_data, name="valid", maximum=params.train_maximum_sql_length)
        transfer_dataset(data.train_data, name="train", maximum=params.train_maximum_sql_length)

    # Construct the model object.
    model_type = InteractionATISModel if params.interaction_level else ATISModel

    model = model_type(
        params,
        data.input_vocabulary,
        data.output_vocabulary,
        data.anonymizer if params.anonymize and params.anonymization_scoring else None)

    last_save_file = params.save_file

    if params.train:
        last_save_file = train(model, data, params, last_save_file)
    if params.evaluate:
        evaluate(model, data, params, last_save_file)
    if params.interactive:
        interact(model, params, data.anonymizer, last_save_file)
    if params.attention:
        evaluate_attention(model, data, params, params.save_file)
Exemplo n.º 3
0
def main():
    params = interpret_args()
    data = atis_data.ATISDataset(params)