Exemplo n.º 1
0
def test_delete():
    """Assert that models can be deleted."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    atom.run("RF")
    atom.rf.delete()
    assert not atom.models
    assert not atom.metric
Exemplo n.º 2
0
def test_automl_regression(cls):
    """Assert that the automl method works for regression tasks."""
    pl = Pipeline(steps=[('rbfsampler', RBFSampler(gamma=0.95, random_state=2)
                          ), ('lassolarscv', LassoLarsCV(normalize=False))])
    cls.return_value.fitted_pipeline_ = pl.fit(X_reg, y_reg)

    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    atom.automl(scoring="r2", random_state=2)
    cls.assert_called_with(n_jobs=1, scoring="r2", verbosity=0, random_state=2)
    assert atom.metric == "r2"
Exemplo n.º 3
0
def test_canvas():
    """Assert that the canvas works."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    atom.run("Tree")
    with atom.canvas(1, 2, title="Title", display=False):
        atom.plot_residuals(title="Residuals plot")
        atom.plot_feature_importance(title="Feature importance plot")
Exemplo n.º 4
0
def test_models_regression(model):
    """Assert that all models work with regression."""
    atom = ATOMRegressor(X_reg, y_reg, test_size=0.24, random_state=1)
    atom.run(
        models=model,
        metric="neg_mean_absolute_error",
        n_calls=2,
        n_initial_points=1,
        bo_params={"base_estimator": "gbrt", "cv": 1},
    )
    assert not atom.errors
    assert hasattr(atom, model) and hasattr(atom, model.lower())
Exemplo n.º 5
0
def test_scoring_metric_is_none():
    """Assert that the scoring method works when metric is None."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    pytest.raises(NotFittedError, atom.scoring)
    atom.run(["Tree", "RF"])
    atom.run("LGB", bagging=5)  # Test with and without bagging
    atom.scoring()
Exemplo n.º 6
0
def test_plot_prc():
    """Assert that the plot_prc method work as intended."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    atom.run("LGB")
    pytest.raises(PermissionError, atom.plot_prc)  # Task is not binary

    atom = ATOMClassifier(X_bin, y_bin, random_state=1)
    pytest.raises(NotFittedError, atom.plot_prc)
    atom.run(["XGB", "LGB"], metric="f1")
    atom.plot_prc(display=False)
    atom.lgb.plot_prc(display=False)
Exemplo n.º 7
0
def test_plot_lift():
    """Assert that the plot_lift method work as intended."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    atom.run("Ridge")
    pytest.raises(PermissionError, atom.plot_lift)  # Task is not binary

    atom = ATOMClassifier(X_bin, y_bin, random_state=1)
    pytest.raises(NotFittedError, atom.plot_lift)
    atom.run(["Tree", "LGB", "PA"], metric="f1")
    pytest.raises(AttributeError, atom.pa.plot_lift)  # No predict_proba
    atom.plot_lift(["Tree", "LGB"], display=False)
    atom.lgb.plot_lift(display=False)
Exemplo n.º 8
0
def test_plot_calibration():
    """Assert that the plot_calibration method work as intended."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    atom.run("Ridge")
    pytest.raises(PermissionError, atom.plot_calibration)  # Task is not binary

    atom = ATOMClassifier(X_bin, y_bin, random_state=1)
    pytest.raises(NotFittedError, atom.plot_calibration)
    atom.run(["Tree", "kSVM"], metric="f1")
    pytest.raises(ValueError, atom.plot_calibration, n_bins=4)
    atom.plot_calibration(display=False)
    atom.tree.plot_calibration(display=False)
Exemplo n.º 9
0
def test_plot_bo():
    """Assert that the plot_bo method work as intended."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    pytest.raises(NotFittedError, atom.plot_bo)
    atom.run("lasso", metric="max_error", n_calls=0)
    pytest.raises(PermissionError, atom.plot_bo)  # No BO in pipeline
    atom.run(["lasso", "ridge"], metric="max_error", n_calls=10)
    atom.plot_bo(display=False)
    atom.lasso.plot_bo(display=False)
Exemplo n.º 10
0
def test_plot_threshold(metric):
    """Assert that the plot_threshold method work as intended."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    atom.run("Ridge")
    pytest.raises(PermissionError, atom.plot_threshold)  # Task is not binary

    atom = ATOMClassifier(X_bin, y_bin, random_state=1)
    pytest.raises(NotFittedError, atom.plot_threshold)
    atom.run(["Tree", "LGB", "PA"], metric="f1")
    pytest.raises(AttributeError, atom.pa.plot_threshold)  # No predict_proba
    pytest.raises(ValueError, atom.tree.plot_threshold, metric="unknown")
    atom.plot_threshold(models=["Tree", "LGB"], display=False)
    atom.lgb.plot_threshold(metric=metric, display=False)
Exemplo n.º 11
0
def test_task_assignment():
    """Assert that the correct task is assigned."""
    atom = ATOMClassifier(X_bin, y_bin, random_state=1)
    assert atom.task == "binary classification"

    atom = ATOMClassifier(X_class, y_class, random_state=1)
    assert atom.task == "multiclass classification"

    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    assert atom.task == "regression"
Exemplo n.º 12
0
def test_default_solver_from_task():
    """Assert that the solver is inferred from the task when a model is selected."""
    # For classification tasks
    atom = ATOMClassifier(X_bin, y_bin, random_state=1)
    atom.feature_selection(strategy="rfe", solver="lgb", n_features=8)
    assert type(atom.pipeline[0].solver).__name__ == "LGBMClassifier"

    # For regression tasks
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    atom.feature_selection(strategy="rfe", solver="lgb", n_features=25)
    assert type(atom.pipeline[0].solver).__name__ == "LGBMRegressor"
Exemplo n.º 13
0
def test_stacking_default_estimator():
    """Assert that a default estimator is provided per goal."""
    atom = ATOMClassifier(X_bin, y_bin, random_state=1)
    atom.run(["LR", "LGB"])
    atom.stacking()
    assert atom.stack.estimator.__class__.__name__ == "LogisticRegression"

    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    atom.run(["Tree", "LGB"])
    atom.stacking()
    assert atom.stack.estimator.__class__.__name__ == "Ridge"
Exemplo n.º 14
0
def test_default_solver_univariate():
    """Assert that the default solver is selected for strategy="univariate"."""
    # For classification tasks
    atom = ATOMClassifier(X_bin, y_bin, random_state=1)
    atom.feature_selection(strategy="univariate", solver=None, n_features=8)
    assert atom.pipeline[0].solver.__name__ == "f_classif"

    # For regression tasks
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    atom.feature_selection(strategy="univariate", solver=None, n_features=8)
    assert atom.pipeline[0].solver.__name__ == "f_regression"
Exemplo n.º 15
0
def test_plot_errors():
    """Assert that the plot_errors method work as intended."""
    atom = ATOMClassifier(X_bin, y_bin, random_state=1)
    atom.run("LR")
    pytest.raises(PermissionError, atom.plot_errors)  # Task is not regression

    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    pytest.raises(NotFittedError, atom.plot_errors)
    atom.run(["Tree", "Bag"], metric="MSE")
    atom.plot_errors(display=False)
    atom.tree.plot_errors(display=False)
Exemplo n.º 16
0
def test_errors_are_updated():
    """Assert that the found exceptions are updated in the errors attribute."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)

    # Produce an error on one model (when n_initial_points > n_calls)
    atom.run(["Tree", "LGB"], n_calls=(3, 2), n_initial_points=(2, 5))
    assert list(atom.errors) == ["LGB"]

    # Subsequent runs should remove the original model
    atom.run(["Tree", "LGB"], n_calls=(5, 3), n_initial_points=(7, 1))
    assert atom.models == "LGB"
Exemplo n.º 17
0
def test_plot_learning_curve():
    """Assert that the plot_learning_curve method work as intended."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    pytest.raises(NotFittedError, atom.plot_learning_curve)
    atom.run("LGB")
    atom.delete()  # Clear the pipeline to allow ts
    atom.train_sizing(["Tree", "LGB"], metric="max_error", bagging=4)
    atom.plot_learning_curve(display=False)
    atom.train_sizing(["Tree", "LGB"], metric="max_error")
    atom.plot_learning_curve(display=False)
Exemplo n.º 18
0
def test_plot_probabilities():
    """Assert that the plot_probabilities method work as intended."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    atom.run("Ridge")
    pytest.raises(PermissionError,
                  atom.plot_probabilities)  # Task is not classif

    y = ["a" if i == 0 else "b" for i in y_bin]
    atom = ATOMClassifier(X_bin, y, random_state=1)
    atom.clean()  # Encode the target column
    pytest.raises(NotFittedError, atom.plot_probabilities)
    atom.run(["Tree", "LGB", "PA"], metric="f1")
    pytest.raises(AttributeError,
                  atom.pa.plot_probabilities)  # No predict_proba
    atom.plot_probabilities(models=["Tree", "LGB"], target="a", display=False)
    atom.lgb.plot_probabilities(target="b", display=False)
Exemplo n.º 19
0
def test_invalid_scoring():
    """Assert that an error is raised when the provided scoring is invalid."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    atom.run("Tree", metric="mse")
    pytest.raises(ValueError, atom.automl, scoring="r2")
Exemplo n.º 20
0
def test_plot_confusion_matrix():
    """Assert that the plot_confusion_matrix method work as intended."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    atom.run(["Ridge"])
    pytest.raises(PermissionError,
                  atom.plot_confusion_matrix)  # Task is not classif

    # For binary classification tasks
    atom = ATOMClassifier(X_bin, y_bin, random_state=1)
    pytest.raises(NotFittedError, atom.plot_confusion_matrix)
    atom.run(["RF", "LGB"])
    atom.plot_confusion_matrix(display=False)
    atom.lgb.plot_confusion_matrix(normalize=True, display=False)

    # For multiclass classification tasks
    atom = ATOMClassifier(X_class, y_class, random_state=1)
    atom.run(["RF", "LGB"])
    pytest.raises(NotImplementedError, atom.plot_confusion_matrix)
    atom.lgb.plot_confusion_matrix(normalize=True, display=False)
Exemplo n.º 21
0
def test_scaling_is_passed():
    """Assert that the scaling is passed to the trainer."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    atom.scale("minmax")
    atom.run("LGB")
    assert atom.dataset.equals(atom.lgb.dataset)
Exemplo n.º 22
0
def test_plot_results(metric):
    """Assert that the plot_results method work as intended."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    pytest.raises(NotFittedError, atom.plot_results)

    # Without bagging
    atom.run(["Tree", "LGB"], metric=metric, bagging=0)
    atom.voting()
    atom.plot_results(metric="me", display=False)
    atom.tree.plot_results(display=False)

    # With bagging
    atom.run("Tree", metric=metric, bagging=3)
    atom.plot_results(metric="me", display=False)
    atom.tree.plot_results(display=False)
Exemplo n.º 23
0
def test_goal_ATOMRegressor():
    """Assert that the goal is set correctly for ATOMRegressor."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    assert atom.goal == "regression"
Exemplo n.º 24
0
def test_plot_successive_halving():
    """Assert that the plot_successive_halving method work as intended."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    pytest.raises(NotFittedError, atom.plot_successive_halving)
    atom.run("LGB")
    atom.delete()  # Clear the pipeline to allow sh
    atom.successive_halving(models=["Tree", "Bag", "RF", "LGB"], bagging=4)
    pytest.raises(ValueError, atom.plot_successive_halving, models="unknown")
    pytest.raises(ValueError, atom.plot_successive_halving, models="BR")
    pytest.raises(ValueError, atom.plot_successive_halving, metric="unknown")
    pytest.raises(ValueError, atom.plot_successive_halving, metric=-1)
    pytest.raises(ValueError, atom.plot_successive_halving, metric=1)
    pytest.raises(ValueError, atom.plot_successive_halving, metric="roc_auc")
    atom.plot_successive_halving(display=False)
    atom.successive_halving(models=["Tree", "Bag", "RF", "LGB"])
    atom.plot_successive_halving(display=False)
Exemplo n.º 25
0
def test_models_and_metric_are_updated():
    """Assert that the models and metric attributes are updated correctly."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    atom.run(["OLS", "Tree"], metric=get_scorer("max_error"))
    assert atom.models == ["OLS", "Tree"]
    assert atom.metric == "max_error"
Exemplo n.º 26
0
def test_trainer_becomes_atom():
    """Assert that the parent trainer is converted to atom."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    atom.run("Tree")
    assert atom is atom.tree.T
Exemplo n.º 27
0
def test_stack_predictions_regression():
    """Assert that the prediction methods work for regression tasks."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    atom.clean()
    atom.run(models=["Tree"])
    atom.branch = "branch_2"
    atom.impute(strat_num="mean", strat_cat="most_frequent")
    atom.run(["PA"])
    atom.stacking(models=["Tree", "PA"], passthrough=True)
    assert isinstance(atom.stack.predict(X_reg), np.ndarray)
    assert isinstance(atom.stack.score(X_reg, y_reg), np.float64)
Exemplo n.º 28
0
def test_passthrough_not_scaled():
    """Assert that the features are not scaled when models don't need it."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    atom.run(["Tree", "RF"])
    atom.stacking(passthrough=True)
    assert not check_scaling(atom.stack.X.iloc[:, 2:])
Exemplo n.º 29
0
def test_calibrate_invalid_task():
    """Assert than an error is raised when task="regression"."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    atom.run("OLS")
    pytest.raises(PermissionError, atom.calibrate)
Exemplo n.º 30
0
def test_custom_models(model):
    """Assert that ATOM works with custom models."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    atom.run(models=model, n_calls=2, n_initial_points=1)
    assert atom.rfr.fullname == "RandomForestRegressor"
    assert atom.rfr.estimator.get_params()["random_state"] == 1