Exemplo n.º 1
0
 def test_non_square1(self):
     image = np.zeros((40, 80))
     y, x = 38, 11
     image[y, x] = 10.
     cy, cx = afr.calculate_center_of_mass(image)
     assert cy == float(y)
     assert cx == float(x)
Exemplo n.º 2
0
    def _get_center_position_com(
            self,
            image_data,
            percent_to_nn=0.40,
            mask_radius=None):
        '''Get new atom position based on the center of mass approach

        Parameters
        ----------
        image_data : Numpy 2D array
        percent_to_nn : float, optional
            The percent of the distance to the nearest neighbor atom
            in the same sub lattice. The distance times this percentage
            defines the mask around the atom where the Gaussian will be
            fitted. A smaller value can reduce the effect from
            neighboring atoms, but might also decrease the accuracy of
            the fitting due to less data to fit to.
            Default 0.4 (40%).
        mask_radius : float, optional
            Radius of the mask around each atom. If this is not set,
            the radius will be the distance to the nearest atom in the
            same sublattice times the `percent_to_nn` value.
            Note: if `mask_radius` is not specified, the Atom_Position objects
            must have a populated nearest_neighbor_list.

        Returns
        -------
        new_position : tuple
            (new x, new y)

        '''
        if mask_radius is None:
            closest_neighbor = 100000000000000000
            for neighbor_atom in self.nearest_neighbor_list:
                distance = self.get_pixel_distance_from_another_atom(
                    neighbor_atom)
                if distance < closest_neighbor:
                    closest_neighbor = distance
            mask_radius = closest_neighbor * percent_to_nn

        cx, cy = int(round(self.pixel_x)), int(round(self.pixel_y))
        crop_radius = np.ceil(mask_radius).astype(int)
        data = _crop_array(image_data, cx, cy, crop_radius+1)
        edgeX, edgeY = cx - crop_radius, cy - crop_radius
        data2 = zero_array_outside_circle(data, mask_radius)
        new_y, new_x = calculate_center_of_mass(data2)
        new_x, new_y = edgeX + new_x, edgeY + new_y

        return new_x, new_y
Exemplo n.º 3
0
 def test_compare_center_of_mass(self):
     from scipy.ndimage import center_of_mass
     rand = np.random.random((5, 5))
     center_of_mass(rand) == afr.calculate_center_of_mass(rand)
Exemplo n.º 4
0
 def test_find_center(self):
     center = np.zeros((5, 5))
     center[1, 1] = 1
     assert afr.calculate_center_of_mass(center) == (1, 1)