Exemplo n.º 1
0
    def versions(
            self,
            path: str,
            *,
            ext: str = None,
    ) -> typing.List[str]:
        r"""Versions of a file.

        Args:
            path: path to file on backend
            ext: file extension, if ``None`` uses characters after last dot

        Returns:
            list of versions in ascending order

        """
        folder, file = self.split(path)
        name = audeer.basename_wo_ext(file, ext=ext)
        vs = self._versions(folder, name)
        return audeer.sort_versions(vs)
Exemplo n.º 2
0
def test_custom(config, level):

    # create feature extractor

    fex = opensmile.Smile(config, level)

    # extract from file

    y_file = fex.process_file(pytest.WAV_FILE)

    # extract from array

    x, sr = audiofile.read(pytest.WAV_FILE)
    y_array = fex.process_signal(x, sr, file=pytest.WAV_FILE)

    # assertions

    assert fex.config_name == audeer.basename_wo_ext(config)
    assert fex.config_path == audeer.safe_path(config)
    assert fex.num_features == len(fex.feature_names)
    assert fex.feature_names == y_file.columns.to_list()
    pd.testing.assert_frame_equal(y_file, y_array)
Exemplo n.º 3
0
def test_basename_wo_ext(path, ext, basename):
    b = audeer.basename_wo_ext(path, ext=ext)
    assert b == basename
    assert type(b) is str
Exemplo n.º 4
0
   'A German database of emotional utterances '
   'spoken by actors '
   'recorded as a part of the DFG funded research project '
   'SE462/3-1 in 1997 and 1999. '
   'Recordings took place in the anechoic chamber '
   'of the Technical University Berlin, '
   'department of Technical Acoustics. '
   'It contains about 500 utterances '
   'from ten different actors '
   'expressing basic six emotions and neutral.'
)

files = sorted(
    [os.path.join('wav', f) for f in os.listdir(os.path.join(src_dir, 'wav'))]
)
names = [audeer.basename_wo_ext(f) for f in files]

emotion_mapping = {
    'W': 'anger',
    'L': 'boredom',
    'E': 'disgust',
    'A': 'fear',
    'F': 'happiness',
    'T': 'sadness',
    'N': 'neutral',
}
emotions = list(parse_names(names, from_i=5, to_i=6, mapping=emotion_mapping))

y = pd.read_csv(
    os.path.join(src_dir, 'erkennung.txt'),
    usecols=['Satz', 'erkannt'],