Exemplo n.º 1
0
def visualizeFeaturesFolder(folder, dimReductionMethod, priorKnowledge="none"):
    '''
    This function generates a chordial visualization for the recordings of the provided path.
    ARGUMENTS:
        - folder:		path of the folder that contains the WAV files to be processed
        - dimReductionMethod:	method used to reduce the dimension of the initial feature space before computing the similarity.
        - priorKnowledge:	if this is set equal to "artist"
    '''
    if dimReductionMethod == "pca":
        allMtFeatures, wavFilesList = aF.dirWavFeatureExtraction(folder, 30.0, 30.0, 0.050, 0.050, computeBEAT=True)
        if allMtFeatures.shape[0] == 0:
            print "Error: No data found! Check input folder"
            return

        namesCategoryToVisualize = [ntpath.basename(w).replace('.wav', '').split(" --- ")[0] for w in wavFilesList];
        namesToVisualize = [ntpath.basename(w).replace('.wav', '') for w in wavFilesList];

        (F, MEAN, STD) = aT.normalizeFeatures([allMtFeatures])
        F = np.concatenate(F)
        pca = mlpy.PCA(method='cov')  # pca (eigenvalue decomposition)
        pca.learn(F)
        coeff = pca.coeff()

        # check that the new PCA dimension is at most equal to the number of samples
        K1 = 2
        K2 = 10
        if K1 > F.shape[0]:
            K1 = F.shape[0]
        if K2 > F.shape[0]:
            K2 = F.shape[0]

        finalDims = pca.transform(F, k=K1)
        finalDims2 = pca.transform(F, k=K2)
    else:
        allMtFeatures, Ys, wavFilesList = aF.dirWavFeatureExtractionNoAveraging(folder, 20.0, 5.0, 0.040,
                                                                                0.040)  # long-term statistics cannot be applied in this context (LDA needs mid-term features)
        if allMtFeatures.shape[0] == 0:
            print "Error: No data found! Check input folder"
            return

        namesCategoryToVisualize = [ntpath.basename(w).replace('.wav', '').split(" --- ")[0] for w in wavFilesList];
        namesToVisualize = [ntpath.basename(w).replace('.wav', '') for w in wavFilesList];

        ldaLabels = Ys
        if priorKnowledge == "artist":
            uNamesCategoryToVisualize = list(set(namesCategoryToVisualize))
            YsNew = np.zeros(Ys.shape)
            for i, uname in enumerate(uNamesCategoryToVisualize):  # for each unique artist name:
                indicesUCategories = [j for j, x in enumerate(namesCategoryToVisualize) if x == uname]
                for j in indicesUCategories:
                    indices = np.nonzero(Ys == j)
                    YsNew[indices] = i
            ldaLabels = YsNew

        (F, MEAN, STD) = aT.normalizeFeatures([allMtFeatures])
        F = np.array(F[0])

        clf = LDA(n_components=10)
        clf.fit(F, ldaLabels)
        reducedDims = clf.transform(F)

        pca = mlpy.PCA(method='cov')  # pca (eigenvalue decomposition)
        pca.learn(reducedDims)
        coeff = pca.coeff()
        reducedDims = pca.transform(reducedDims, k=2)

        # TODO: CHECK THIS ... SHOULD LDA USED IN SEMI-SUPERVISED ONLY????

        uLabels = np.sort(np.unique((Ys)))  # uLabels must have as many labels as the number of wavFilesList elements
        reducedDimsAvg = np.zeros((uLabels.shape[0], reducedDims.shape[1]))
        finalDims = np.zeros((uLabels.shape[0], 2))
        for i, u in enumerate(uLabels):
            indices = [j for j, x in enumerate(Ys) if x == u]
            f = reducedDims[indices, :]
            finalDims[i, :] = f.mean(axis=0)
        finalDims2 = reducedDims

    for i in range(finalDims.shape[0]):
        plt.text(finalDims[i, 0], finalDims[i, 1], ntpath.basename(wavFilesList[i].replace('.wav', '')),
                 horizontalalignment='center', verticalalignment='center', fontsize=10)
        plt.plot(finalDims[i, 0], finalDims[i, 1], '*r')
    plt.xlim([1.2 * finalDims[:, 0].min(), 1.2 * finalDims[:, 0].max()])
    plt.ylim([1.2 * finalDims[:, 1].min(), 1.2 * finalDims[:, 1].max()])
    plt.show()

    SM = 1.0 - distance.squareform(distance.pdist(finalDims2, 'cosine'))
    for i in range(SM.shape[0]):
        SM[i, i] = 0.0;

    chordialDiagram("visualization", SM, 0.50, namesToVisualize, namesCategoryToVisualize)

    SM = 1.0 - distance.squareform(distance.pdist(F, 'cosine'))
    for i in range(SM.shape[0]):
        SM[i, i] = 0.0;
    chordialDiagram("visualizationInitial", SM, 0.50, namesToVisualize, namesCategoryToVisualize)

    # plot super-categories (i.e. artistname
    uNamesCategoryToVisualize = sort(list(set(namesCategoryToVisualize)))
    finalDimsGroup = np.zeros((len(uNamesCategoryToVisualize), finalDims2.shape[1]))
    for i, uname in enumerate(uNamesCategoryToVisualize):
        indices = [j for j, x in enumerate(namesCategoryToVisualize) if x == uname]
        f = finalDims2[indices, :]
        finalDimsGroup[i, :] = f.mean(axis=0)

    SMgroup = 1.0 - distance.squareform(distance.pdist(finalDimsGroup, 'cosine'))
    for i in range(SMgroup.shape[0]):
        SMgroup[i, i] = 0.0;
    chordialDiagram("visualizationGroup", SMgroup, 0.50, uNamesCategoryToVisualize, uNamesCategoryToVisualize)
Exemplo n.º 2
0
def visualizeFeaturesFolder(folder, dimReductionMethod, priorKnowledge="none"):
    '''
    This function generates a chordial visualization for the recordings of the provided path.
    ARGUMENTS:
        - folder:        path of the folder that contains the WAV files to be processed
        - dimReductionMethod:    method used to reduce the dimension of the initial feature space before computing the similarity.
        - priorKnowledge:    if this is set equal to "artist"
    '''
    if dimReductionMethod == "pca":
        allMtFeatures, wavFilesList = aF.dirWavFeatureExtraction(
            folder, 30.0, 30.0, 0.050, 0.050, computeBEAT=True)
        if allMtFeatures.shape[0] == 0:
            print("Error: No data found! Check input folder")
            return

        namesCategoryToVisualize = [
            ntpath.basename(w).replace('.wav', '').split(" --- ")[0]
            for w in wavFilesList
        ]
        namesToVisualize = [
            ntpath.basename(w).replace('.wav', '') for w in wavFilesList
        ]

        (F, MEAN, STD) = aT.normalizeFeatures([allMtFeatures])
        F = np.concatenate(F)

        # check that the new PCA dimension is at most equal to the number of samples
        K1 = 2
        K2 = 10
        if K1 > F.shape[0]:
            K1 = F.shape[0]
        if K2 > F.shape[0]:
            K2 = F.shape[0]
        pca1 = sklearn.decomposition.PCA(n_components=K1)
        pca1.fit(F)
        pca2 = sklearn.decomposition.PCA(n_components=K2)
        pca2.fit(F)

        finalDims = pca1.transform(F)
        finalDims2 = pca2.transform(F)
    else:
        allMtFeatures, Ys, wavFilesList = aF.dirWavFeatureExtractionNoAveraging(
            folder, 20.0, 5.0, 0.040, 0.040
        )  # long-term statistics cannot be applied in this context (LDA needs mid-term features)
        if allMtFeatures.shape[0] == 0:
            print("Error: No data found! Check input folder")
            return

        namesCategoryToVisualize = [
            ntpath.basename(w).replace('.wav', '').split(" --- ")[0]
            for w in wavFilesList
        ]
        namesToVisualize = [
            ntpath.basename(w).replace('.wav', '') for w in wavFilesList
        ]

        ldaLabels = Ys
        if priorKnowledge == "artist":
            uNamesCategoryToVisualize = list(set(namesCategoryToVisualize))
            YsNew = np.zeros(Ys.shape)
            for i, uname in enumerate(
                    uNamesCategoryToVisualize):  # for each unique artist name:
                indicesUCategories = [
                    j for j, x in enumerate(namesCategoryToVisualize)
                    if x == uname
                ]
                for j in indicesUCategories:
                    indices = np.nonzero(Ys == j)
                    YsNew[indices] = i
            ldaLabels = YsNew

        (F, MEAN, STD) = aT.normalizeFeatures([allMtFeatures])
        F = np.array(F[0])

        clf = sklearn.discriminant_analysis.LinearDiscriminantAnalysis(
            n_components=10)
        clf.fit(F, ldaLabels)
        reducedDims = clf.transform(F)

        pca = sklearn.decomposition.PCA(n_components=2)
        pca.fit(reducedDims)
        reducedDims = pca.transform(reducedDims)

        # TODO: CHECK THIS ... SHOULD LDA USED IN SEMI-SUPERVISED ONLY????

        uLabels = np.sort(
            np.unique((Ys))
        )  # uLabels must have as many labels as the number of wavFilesList elements
        reducedDimsAvg = np.zeros((uLabels.shape[0], reducedDims.shape[1]))
        finalDims = np.zeros((uLabels.shape[0], 2))
        for i, u in enumerate(uLabels):
            indices = [j for j, x in enumerate(Ys) if x == u]
            f = reducedDims[indices, :]
            finalDims[i, :] = f.mean(axis=0)
        finalDims2 = reducedDims

    for i in range(finalDims.shape[0]):
        plt.text(finalDims[i, 0],
                 finalDims[i, 1],
                 ntpath.basename(wavFilesList[i].replace('.wav', '')),
                 horizontalalignment='center',
                 verticalalignment='center',
                 fontsize=10)
        plt.plot(finalDims[i, 0], finalDims[i, 1], '*r')
    plt.xlim([1.2 * finalDims[:, 0].min(), 1.2 * finalDims[:, 0].max()])
    plt.ylim([1.2 * finalDims[:, 1].min(), 1.2 * finalDims[:, 1].max()])
    plt.show()

    SM = 1.0 - distance.squareform(distance.pdist(finalDims2, 'cosine'))
    for i in range(SM.shape[0]):
        SM[i, i] = 0.0

    chordialDiagram("visualization", SM, 0.50, namesToVisualize,
                    namesCategoryToVisualize)

    SM = 1.0 - distance.squareform(distance.pdist(F, 'cosine'))
    for i in range(SM.shape[0]):
        SM[i, i] = 0.0
    chordialDiagram("visualizationInitial", SM, 0.50, namesToVisualize,
                    namesCategoryToVisualize)

    # plot super-categories (i.e. artistname
    uNamesCategoryToVisualize = sort(list(set(namesCategoryToVisualize)))
    finalDimsGroup = np.zeros(
        (len(uNamesCategoryToVisualize), finalDims2.shape[1]))
    for i, uname in enumerate(uNamesCategoryToVisualize):
        indices = [
            j for j, x in enumerate(namesCategoryToVisualize) if x == uname
        ]
        f = finalDims2[indices, :]
        finalDimsGroup[i, :] = f.mean(axis=0)

    SMgroup = 1.0 - distance.squareform(
        distance.pdist(finalDimsGroup, 'cosine'))
    for i in range(SMgroup.shape[0]):
        SMgroup[i, i] = 0.0
    chordialDiagram("visualizationGroup", SMgroup, 0.50,
                    uNamesCategoryToVisualize, uNamesCategoryToVisualize)
Exemplo n.º 3
0
def main():

    start_time = time.time()
    # all bands are grouped by style
    style_list = [
        [
            'arch_enemy', 'at_the_gates', 'children_of_bodom', 'wintersun',
            'in_flames', 'fleshgod_apocalypse', 'opeth', 'katatonia',
            'insomnium', 'swallow_the_sun', 'ghost', 'enslaved',
            'dark_tranquillity', 'dark_lunacy', 'trivium', 'paradise_lost',
            'behemoth'
        ],
        [
            'while_she_sleeps', 'underoath', 'motionless_in_white',
            'memphis_may_fire', 'killswitch_engage', 'caliban',
            'bullet_for_my_valentine', 'bring_me_the_horizon', 'blessthefall',
            'black_veil_brides', 'august_burns_red'
        ],
        [
            'whitechapel', 'veil_of_maya', 'thy_art_is_murder',
            'the_black_dahlia_murder', 'suicide_silence', 'rings_of_saturn',
            'job_for_a_cowboy', 'infant_annhilator', 'decapitated', 'carnifex'
        ],
        [
            'anthrax', 'iron_maiden', 'judas_priest', 'megadeth', 'metallica',
            'sepultura', 'slayer', 'death', 'testament'
        ],
        [
            'leprous', 'ihsahn', 'between_the_buried_and_me', 'baroness',
            'gojira', 'code_orange', 'symphony_x', 'dream_theater'
        ],
        [
            'acid_bath', 'isis', 'neurosis', 'mastodon', 'today_is_the_day',
            'torche', 'cult_of_luna'
        ],
        [
            'the_faceless', 'protest_the_hero', 'meshuggah', 'born_of_osiris',
            'periphery'
        ],
        [
            'xandria', 'within_temptation', 'epica', 'rhapsody_of_fire',
            'haggard', 'eluveitie'
        ],
        [
            'amon_amarth', 'amorphis', 'blind_guardian', 'eluveitie',
            'finntroll', 'enslaved'
        ], ['nile', 'napalm_death', 'deicide', 'carcass', 'cannibal_corpse'],
        ['venom', 'mayhem', 'immortal', 'darkthrone', 'burzum']
    ]

    # randomly pick 5 bands from a random style
    random_style = int(uniform(0, 11))
    random_bands = sample(style_list[random_style], k=5)
    print 'bands picked'
    print random_bands
    print '\n'

    all_songs_from_file = []
    for each_band in random_bands:  # get all songs from selected band
        # path = "C:\Users\Nathan\Desktop\WI project all data\COMP4075_PROJECT\project_songs\songs_" + each_band
        path = "/Users/sunjingxuan/Desktop/WI_project_all_data/COMP4075_PROJECT/project_songs/songs_" + each_band
        all_songs_from_file.append(
            [f for f in os.listdir(path) if fnmatch.fnmatch(f, '*.mp3')])

    all_songs = []
    for each_song_list in all_songs_from_file:
        for each_song in each_song_list:
            all_songs.append(each_song)

    # preprocessing for song names -> different format
    processed_all_song_name = []
    for each_song_name in all_songs:
        tmp_song_name = ''
        inBracket = False
        inSquare = False
        for index, each_word in enumerate(each_song_name):
            if each_word == '(':  #for removing (xxx)
                inBracket = True
            elif each_word == ')':
                inBracket = False
            if each_word == '[':  #for removing (xxx)
                inSquare = True
            elif each_word == ']':
                inSquare = False

            if inBracket == False and inSquare == False:
                if each_word == '.':  #if the end of the name-> break
                    break
                if each_word is not '-' and each_word is not ')' and \
                each_word is not ']':
                    tmp_song_name += each_word
                elif each_word == '-':
                    tmp_song_name = ''  #remove band name
        processed_all_song_name.append(tmp_song_name)
    for idx, each_name in enumerate(processed_all_song_name):
        if each_name != '':
            if each_name[0] == ' ':  #remove the starting " "
                tmp = ''
                for index, each_char in enumerate(each_name):
                    if index != 0:
                        tmp += each_char
                processed_all_song_name[idx] = tmp

    for idx, each_name in enumerate(processed_all_song_name):
        if each_name != '':
            if each_name[len(each_name) - 1] == ' ':  #remove the ending " "
                tmp = ''
                for index, each_char in enumerate(each_name):
                    if index != len(each_name) - 1:
                        tmp += each_char
                processed_all_song_name[idx] = tmp

    # print 'processed all song names'
    # print len(processed_all_song_name)
    # print '\n'
    ##########################################finish preprocessing###########################################

    each_song = []  #contains all candidate songs
    all_lyrics = ''
    songs_have_lyrics = []
    # load the lyrics file
    for each_band in random_bands:
        each_file = 'lyrics_' + each_band + '.txt'

        # based on the mp3 list, pick those songs that its lyrics can be found
        with open(each_file, 'r') as each_lyrics_file:
            lyrics = each_lyrics_file.readlines()
            for index_for_items, data_items in enumerate(
                    lyrics):  #for each line
                for index, each_character in enumerate(
                        data_items):  #for each word
                    if parseINT(each_character
                                ):  #if the first word is an int-> song
                        if data_items[index + 1] == '.':
                            sep = data_items.split()
                            each_song_name = ''
                            for idx, each_part in enumerate(sep):
                                if idx is not 0 and idx is not len(sep) - 1:
                                    each_song_name += each_part + ' '  #get song names
                                elif idx is len(sep) - 1:
                                    each_song_name += each_part
                            each_song.append(each_song_name)
                            for processed_song in processed_all_song_name:
                                if processed_song in each_song_name and processed_song not in songs_have_lyrics:
                                    songs_have_lyrics.append(processed_song)
                                    break

        each_lyrics_file.close()

    # print 'songs that have lyrics'
    # print len(songs_have_lyrics)
    # print '\n'

    selected_playlist = sample(songs_have_lyrics, k=10)
    print 'selected playlist'
    print selected_playlist
    print '\n'
    #####################################finish picking songs##########################################
    songs_picked = ''

    for each_band in random_bands:
        each_file = 'lyrics_' + each_band + '.txt'

        with open(each_file, 'r') as each_lyrics_file:
            lyrics = each_lyrics_file.readlines()
            start_copy = False
            for index_for_items, data_items in enumerate(
                    lyrics):  #for each line
                for index, each_character in enumerate(
                        data_items):  #for each word
                    if parseINT(each_character
                                ):  #if the first word is an int-> song
                        if data_items[index + 1] == '.':
                            sep = data_items.split()
                            each_song_name = ''
                            for idx, each_part in enumerate(sep):
                                if idx is not 0 and idx is not len(sep) - 1:
                                    each_song_name += each_part + ' '  #get song names
                                elif idx is len(sep) - 1:
                                    each_song_name += each_part

                            for selected_song in selected_playlist:
                                if selected_song in each_song_name and selected_song not in songs_picked:
                                    songs_picked += (selected_song + " ")
                                    start_copy = True
                                    break
                                else:
                                    start_copy = False
                if start_copy == True:
                    all_lyrics += data_items
        each_lyrics_file.close()
    #####################################finish getting lyrics##########################################
    preprocessed_lyrics = preprocess_text(all_lyrics, False)
    preprocessed_lyrics = preprocessed_lyrics.split(" ")
    '''
    ###############################preprocessing for text of all bands###################################
    
    path = "C:\Users\Nathan\Desktop\WI project all data\COMP4075_PROJECT\project_lyrics"
    all_songs_from_file.append([f for f in os.listdir(path) if fnmatch.fnmatch(f, '*.mp3')])
    
    lyricLists=[]
    lyricsFiles = [f for f in os.listdir(path) if fnmatch.fnmatch(f, '*.txt')]
    for lyricsFile in lyricsFiles:
        if lyricsFile!= "all_words.txt" and lyricsFile != 'all_top_k_words.txt':
            with open(lyricsFile,'r') as rf:
                text=''
                for row in rf:
                    text=text+row
                lyricLists.append(preprocess_text(text, False))             #add all bands' songs
            rf.close()
        
    vectorizer = TfidfVectorizer(max_df=0.5, min_df=2, sublinear_tf=True)
    wordvec = vectorizer.fit_transform(lyricLists)
    wordvec_matrix=wordvec.toarray()
    #print len(wordvec_matrix[0])
    numpy.save('tfidf_model', wordvec_matrix)                           #output training model
    
    all_words = ''
    for i, feature in enumerate(vectorizer.get_feature_names()):        #get the word sequence of the vector
        all_words +=  feature + ','
    with open('all_words.txt', 'w') as output:
        output.write(all_words)                                         #output all words (with correct sequence)
    output.close()
    

    with open('all_words.txt', 'r') as input_file:        #load in all words in all bands
        tmp_words = input_file.read()
    all_words = tmp_words.split(",")
    input_file.close()
    
    # find top-k words for each vector
    all_top_k_word = []
    for each_vector in wordvec_matrix:
        synonym = []
        top_k_words_value = nlargest(50, each_vector)
        top_k_index = []

        for each_value in top_k_words_value:
            for index, each_cal in enumerate(each_vector):
                if each_value == each_cal and index not in top_k_index:
                    top_k_index.append(index)                   #find the corresponding index in all_words
                    break
        
        for index, each_index in enumerate(top_k_index):
            for syn in wordnet.synsets(all_words[each_index]):
                for l in syn.lemmas():
                    synonym.append(l.name().encode('ascii', 'ignore'))
            synonym.append(all_words[each_index])
            
        synonym = list(set(synonym))        #remove duplicates
        print len(synonym)
        string_format = ''
        for idx, each_syn in enumerate(synonym):
            if idx != len(synonym)-1:
                string_format += each_syn + ' '
            else:
                string_format += each_syn

        all_top_k_word.append(string_format)
    
    #cast list to string and output
    output_top_k = ''
    for index, each_string in enumerate(all_top_k_word):
        if index != len(all_top_k_word) -1:
           output_top_k += each_string + ','
        else:
           output_top_k += each_string 
    
    with open('all_top_k_words.txt', 'w') as output_k:
        output_k.write(output_top_k)                                         #output all words (with correct sequence)
    output_k.close()
    #print output_top_k
    '''
    '''
    ############################################preprocessing for IDF vector###############################################
    with open('all_words.txt', 'r') as input_file:                   #load in all words in all bands
        tmp_words = input_file.read()
    all_words = tmp_words.split(",")
    input_file.close()
    
    # precalculating the idf dict
    lyricLists=[]
    path = "C:\Users\Nathan\Desktop\WI project all data\COMP4075_PROJECT\project_lyrics"
    lyricsFiles = [f for f in os.listdir(path) if fnmatch.fnmatch(f, '*.txt')]
    for lyricsFile in lyricsFiles:
        if lyricsFile != 'all_words.txt' and lyricsFile != 'all_top_k_words.txt':
            with open(lyricsFile,'r') as rf:
                text=''
                for row in rf:
                    text=text+row
                lyricLists.append(preprocess_text(text, False))     #add all bands' songs
            rf.close()
    idf_list = inv_doc_freq(all_words, lyricLists)
    with open('idf_file.csv', 'wb') as csv_file:
        writer = csv.writer(csv_file)
        for key, value in idf_list.items():
            writer.writerow([key, value])
    csv_file.close()
    '''

    with open('idf_file.csv',
              'rb') as csv_file:  #load in preprocessed idf file
        reader = csv.reader(csv_file)
        idf_list = dict(reader)
    csv_file.close()

    with open('all_words.txt',
              'r') as input_file:  #load in all words in all bands
        tmp_words = input_file.read()
    all_words = tmp_words.split(",")
    input_file.close()

    preprocessed_lyrics = set(
        preprocessed_lyrics)  #remove duplicate word (faster)

    tf_list = term_freq(preprocessed_lyrics)

    # remove words that are filtered out in TFIDF vectorizer
    removed_words = list(set(preprocessed_lyrics).difference(set(all_words)))
    preprocessed_lyrics = list(set(preprocessed_lyrics) - set(removed_words))

    # get the playlist TF-IDF vector
    playlist_vector = []  #the playlist TF-IDF vector
    for each_word in all_words:
        exist = False
        for each_lyrics in preprocessed_lyrics:
            if each_word == each_lyrics:
                tfidf_value = float(tf_list[each_word]) * float(
                    idf_list[each_word])
                playlist_vector.append(tfidf_value)
                exist = True
                break
        if exist == False:
            playlist_vector.append(0)

    # get top-k word in the playlist
    top_k_words_value = nlargest(50, playlist_vector)
    top_k_index = []
    playlist_top_k = []

    for each_value in top_k_words_value:
        for index, each_cal in enumerate(playlist_vector):
            if each_value == each_cal and index not in top_k_index:
                top_k_index.append(
                    index)  #find the corresponding index in all_words
                break

    for each_index in top_k_index:
        playlist_top_k.append(all_words[each_index])  #get the actual word

    synonyms = []
    for each_word in playlist_top_k:
        for syn in wordnet.synsets(each_word):
            for l in syn.lemmas():
                synonyms.append(l.name().encode('ascii', 'ignore'))
    playlist_top_k += synonyms  #concadenate two list
    playlist_top_k = list(set(playlist_top_k))

    print "playlist keywords length (including synonyms)"
    print len(playlist_top_k)
    print "\n"

    # load in all bands' top-k word
    with open('all_top_k_words.txt',
              'r') as top_k_input_file:  #load in all words in all bands
        tmp = top_k_input_file.read()
    all_bands_top_k = tmp.split(",")
    top_k_input_file.close()

    # calculate intersect keyword between user's playlist and each_band
    all_lyrics_similarity = []
    for each_string in all_bands_top_k:
        each_band_top_k = each_string.split(" ")
        all_lyrics_similarity.append(
            len(list(set(playlist_top_k).intersection(set(each_band_top_k)))))

    # print 'lyrics similarity'
    # print all_lyrics_similarity
    # print '\n'
    '''

    '''

    all_band_names = [['acid_bath'],['amon_amarth'],['amorphis'],['anthrax'],['arch_enemy'],['at_the_gates'],['august_burns_red'],['avatar'],['avenged_sevenfold'],['baroness'],\
                      ['behemoth'],['between_the_buried_and_me'],['black_sabbath'],['black_veil_brides'],['blessthefall'],['blind_guardian'],['born_of_osiris'],['breakdown_of_sanity'],['bring_me_the_horizon'],['bullet_for_my_valentine'],\
                      ['burzum'],['caliban'],['cannibal_corpse'],['carcass'],['carnifex'],['children_of_bodom'],['code_orange'],['converge'],['cradle_of_filth'],['cult_of_luna'],\
                      ['dark_lunacy'],['dark_tranquillity'],['darkthrone'],['death'],['decapitated'],['deftones'],['deicide'],['dimmu_borgir'],['dream_theater'],['eluveitie'],\
                      ['enslaved'],['epica'],['fear_factory'],['finntroll'],['fleshgod_apocalypse'],['ghost'],['gojira'],['haggard'],['ihsahn'],['immortal'],\
                      ['in_flames'],['infant_annhilator'],['insomnium'],['iron_maiden'],['isis'],['job_for_a_cowboy'],['judas_priest'],['katatonia'],['killswitch_engage'],['leprous'],\
                      ['mastodon'],['mayhem'],['megadeth'],['memphis_may_fire'],['meshuggah'],['metallica'],['motionless_in_white'],['motley_crue'],['mr_bungle'],['napalm_death'],\
                      ['neurosis'],['nile'],['opeth'],['ozzy_osbourne'],['paradise_lost'],['periphery'],['protest_the_hero'],['rhapsody_of_fire'],['rings_of_saturn'],['sepultura'],\
                      ['slayer'],['slipknot'],['suicide_silence'],['swallow_the_sun'],['symphony_x'],['testament'],['the_black_dahlia_murder'],['the_faceless'],['thy_art_is_murder'],['today_is_the_day'],\
                      ['torche'],['trivium'],['underoath'],['veil_of_maya'],['venom'],['while_she_sleeps'],['whitechapel'],['wintersun'],['within_temptation'],['xandria']]

    # for getting the top-k most similar band (lyrics)
    most_similar_band_by_lyrics = []
    top_k_similar_values = nlargest(5, all_lyrics_similarity)

    similar_index = []
    for each_value in top_k_similar_values:
        for index, sim in enumerate(all_lyrics_similarity):
            if each_value == sim and index not in similar_index:
                similar_index.append(index)

    for each_index in similar_index:
        most_similar_band_by_lyrics.append(all_band_names[each_index])
    print 'top-5 bands for lyrics'
    print most_similar_band_by_lyrics
    print '\n'

    # min-max normalization
    normalized_lyrics_similarity = []
    max_lyrics_similarity = max(all_lyrics_similarity)
    min_lyrics_similarity = min(all_lyrics_similarity)
    for each_score in all_lyrics_similarity:
        normalized_lyrics_similarity.append(
            float((each_score - min_lyrics_similarity)) / float(
                (max_lyrics_similarity - min_lyrics_similarity)))
    #print normalized_lyrics_similarity

    # create a new folder and copy all playlist songs into the folder for audio feature extraction
    all_song_dir = []
    all_song_path_name = []

    for each_band in random_bands:
        all_song_dir.append(
            "/Users/sunjingxuan/Desktop/WI_project_all_data/COMP4075_PROJECT/project_songs/songs_"
            + each_band)
    for each_dir in all_song_dir:
        for each_song in os.listdir(each_dir):
            all_song_path_name.append(each_dir + "/" + each_song)

    all_path_needed = []
    for each_selected_song in selected_playlist:
        for each_song_path in all_song_path_name:
            if each_selected_song in each_song_path:
                all_path_needed.append(each_song_path)
                break

    play_list_directory = "/Users/sunjingxuan/Desktop/user_playlist"
    if not os.path.exists(
            play_list_directory):  #create a tmp directory to store playlist
        os.makedirs(play_list_directory)  #for calling audio feature function
    else:
        shutil.rmtree(play_list_directory)
        os.makedirs(play_list_directory)

    for each_path in all_path_needed:

        shutil.copy(each_path, play_list_directory)
    #############################finish outputing songs to a file###############################

    # load in preextracted audio feature for each band
    [allMtFeatures,
     wavFilesList2] = afe.dirWavFeatureExtraction(play_list_directory, 1.0,
                                                  1.0, 0.050, 0.050, False)
    allMtFeatures = allMtFeatures.flatten()
    all_bands_audio_feature = numpy.load(
        "audio_feature_new_sequence.npy")  #get all bands features

    #calculate audio similarity
    all_audio_similarity = []
    for one_band_audio_feature in all_bands_audio_feature:
        one_band_audio_feature = one_band_audio_feature.flatten()
        one_audio_similarity = dist.cosine(one_band_audio_feature,
                                           allMtFeatures)
        all_audio_similarity.append(one_audio_similarity)

    # print 'audio similarity'
    # print all_audio_similarity
    # print '\n'

    # for getting the top-k most similar band (audio)
    most_similar_band_by_audio = []
    top_k_similar_values = nlargest(5, all_audio_similarity)

    similar_index = []
    for each_value in top_k_similar_values:
        for index, sim in enumerate(all_audio_similarity):
            if each_value == sim and index not in similar_index:
                similar_index.append(index)

    for each_index in similar_index:
        most_similar_band_by_audio.append(all_band_names[each_index])
    print 'top-5 bands for audio'
    print most_similar_band_by_audio
    print '\n'

    # min-max normalization
    normalized_audio_similarity = []
    max_audio_similarity = max(all_audio_similarity)
    min_audio_similarity = min(all_audio_similarity)
    for each_score in all_audio_similarity:
        normalized_audio_similarity.append(
            float((each_score - min_audio_similarity)) / float(
                (max_audio_similarity - min_audio_similarity)))
    # print normalized_audio_similarity

    # merge and get overall similarity
    overall_weighted_similarity = []
    weight = 0.7
    for index, each_sim in enumerate(normalized_lyrics_similarity):
        overall_weighted_similarity.append(
            (float(weight) * float(normalized_lyrics_similarity[index])) +
            (float((1 - weight)) * float(normalized_audio_similarity[index])))

    # get final recommendation
    final_recommendation = []
    top_k_similar_values = nlargest(5, overall_weighted_similarity)

    similar_index = []
    for each_value in top_k_similar_values:
        for index, sim in enumerate(overall_weighted_similarity):
            if each_value == sim and index not in similar_index:
                similar_index.append(index)

    for each_index in similar_index:
        final_recommendation.append(all_band_names[each_index])
    print 'Final recommendation'
    print final_recommendation
    print '\n'

    # check if the style is correct
    num_correct = 0
    correct_list = []
    for each_recommendation in final_recommendation:
        for each_band in style_list[random_style]:
            if each_band == each_recommendation[0]:
                num_correct += 1
                correct_list.append(each_recommendation)

    print "number of correct recommendation"
    print num_correct
    print '\n'

    print 'recomendation list'
    print correct_list

    print 'time used'
    print time.time() - start_time
    print '\n'