def fit(self, pipeline_config, run_result_dir):

        instance_file_config_parser = ConfigFileParser([
            ConfigOption(name='path', type='directory', required=True),
            ConfigOption(name='is_classification', type=to_bool,
                         required=True),
            ConfigOption(name='is_multilabel', type=to_bool, required=True),
            ConfigOption(name='num_features', type=int, required=True),
            ConfigOption(name='categorical_features',
                         type=bool,
                         required=True,
                         list=True),
            ConfigOption(
                name='instance_shape',
                type=[ast.literal_eval, lambda x: isinstance(x, tuple)],
                required=True)
        ])
        instance_info = instance_file_config_parser.read(
            os.path.join(run_result_dir, 'instance.info'))
        instance_info = instance_file_config_parser.set_defaults(instance_info)

        dm = DataManager()
        if instance_info["is_multilabel"]:
            dm.problem_type = ProblemType.FeatureMultilabel
        elif instance_info["is_classification"]:
            dm.problem_type = ProblemType.FeatureClassification
        else:
            dm.problem_type = ProblemType.FeatureClassification

        return {'instance_info': instance_info, 'data_manager': dm}
 def fit(self, pipeline_config, instance):
     assert pipeline_config['problem_type'] in [
         'feature_classification', 'feature_multilabel',
         'feature_regression'
     ]
     dm = DataManager(verbose=pipeline_config["data_manager_verbose"])
     dm.read_data(instance,
                  is_classification=(pipeline_config["problem_type"] in [
                      'feature_classification', 'feature_multilabel'
                  ]),
                  test_split=pipeline_config["test_split"])
     return {"data_manager": dm}
Exemplo n.º 3
0
__version__ = "0.0.1"
__license__ = "BSD"


import os, sys
sys.path.append(os.path.abspath(os.path.join(__file__, "..", "..", "..")))
import logging

from autoPyTorch import AutoNetClassification, AutoNetMultilabel
import autoPyTorch.pipeline.nodes as autonet_nodes
from autoPyTorch.components.metrics.additional_logs import test_result
import autoPyTorch.components.metrics as autonet_metrics

from autoPyTorch.data_management.data_manager import DataManager

dm = DataManager(verbose=1)
dataset_dir = os.path.abspath(os.path.join(os.path.dirname( __file__ ), '..', '..', 'datasets'))

# choose between the 5 defined testcases
TEST_CASE = 1

""" TEST CASE 1: Sparse data """
if TEST_CASE == 1:
    dm.read_data(os.path.join(dataset_dir, "automl/newsgroups/newsgroups_public.info"), is_classification=True)
    metric = "pac_metric"
    additional_metrices = ["accuracy"]

""" TEST CASE 2: Sparse binary data """
if TEST_CASE == 2:
    dm.read_data(os.path.join(dataset_dir, "automl/dorothea/dorothea_public.info"), is_classification=True)
    metric = "auc_metric"
Exemplo n.º 4
0
__author__ = "Max Dippel, Michael Burkart and Matthias Urban"
__version__ = "0.0.1"
__license__ = "BSD"


import os
import sys
import logging

from autoPyTorch import AutoNetClassification

from autoPyTorch.data_management.data_manager import DataManager

from autoPyTorch.utils.mem_test_thread import MemoryLogger

dm = DataManager(verbose=1)
dataset_dir = os.path.abspath(os.path.join(os.path.dirname( __file__ ), '..', 'datasets'))


dm.read_data(os.path.join(dataset_dir, "classification/dataset_28_optdigits.csv"), is_classification=True)
# 5620 samples, 10 classes, 65 features      --->    98% validation accuracy







mem_logger = MemoryLogger()
mem_logger.start()
Exemplo n.º 5
0
__author__ = "Max Dippel, Michael Burkart and Matthias Urban"
__version__ = "0.0.1"
__license__ = "BSD"

import os, sys

sys.path.append(os.path.abspath(os.path.join(__file__, "..", "..", "..")))
from autoPyTorch import AutoNetClassification
from autoPyTorch.data_management.data_manager import DataManager

# Note: You can write your own datamanager! Call fit with respective train, valid data (numpy matrices)
dm = DataManager()
dm.generate_classification(num_classes=3, num_features=21, num_samples=1500)

# Note: every parameter has a default value, you do not have to specify anything. The given parameter allow a fast test.
autonet = AutoNetClassification(budget_type='epochs',
                                min_budget=1,
                                max_budget=9,
                                num_iterations=1,
                                log_level='info')

res = autonet.fit(X_train=dm.X,
                  Y_train=dm.Y,
                  X_valid=dm.X_train,
                  Y_valid=dm.Y_train)

print(res)
print("Score:", autonet.score(X_test=dm.X_train, Y_test=dm.Y_train))
Exemplo n.º 6
0
__author__ = "Max Dippel, Michael Burkart and Matthias Urban"
__version__ = "0.0.1"
__license__ = "BSD"

import os, sys
sys.path.append(os.path.abspath(os.path.join(__file__, "..", "..", "..")))
from autoPyTorch import AutoNetRegression
from autoPyTorch.data_management.data_manager import DataManager

# Note: You can write your own datamanager! Call fit train, valid data (numpy matrices)
dm = DataManager()
dm.generate_regression(num_features=21, num_samples=1500)
X_train = dm.X
Y_train = dm.Y
X_valid = dm.X_train
Y_valid = dm.Y_train

# Note: every parameter has a default value, you do not have to specify anything. The given parameter allow a fast test.
autonet = AutoNetRegression(budget_type='epochs',
                            min_budget=1,
                            max_budget=9,
                            num_iterations=1,
                            log_level='info')

res = autonet.fit(X_train=X_train,
                  Y_train=Y_train,
                  X_valid=X_valid,
                  Y_valid=Y_valid)

print(res)
Exemplo n.º 7
0
        os.mkdir(outputs_folder)
    if not os.path.exists(output_base_dir):
        os.mkdir(output_base_dir)
    if not os.path.exists(result_dir):
        os.mkdir(result_dir)

    # iterate over all runs
    for run_number in runs_range:
        replacement_dict["RUN_NUMBER"] = run_number

        for config_id in configs_range:
            replacement_dict["CONFIG_ID"] = config_id
            replacement_dict["CONFIG_FILE"] = all_configs[config_id]

            # get autonet
            dm = DataManager()
            dm.problem_type = {
                "feature_classification": ProblemType.FeatureClassification,
                "feature_multilabel": ProblemType.FeatureMultilabel,
                "feature_regression": ProblemType.FeatureRegression
            }[benchmark_config["problem_type"]]
            autonet = CreateAutoNet().fit(benchmark_config, dm)["autonet"]
            autonet_config_file = benchmark_config["autonet_configs"][
                config_id]

            for instance_id in instances_range:
                replacement_dict["INSTANCE_ID"] = instance_id
                replacement_dict["INSTANCE_FILE"] = all_instances[instance_id]

                # read autonet config
                SetAutoNetConfig().fit(benchmark_config, autonet,
Exemplo n.º 8
0
    def fit(self, pipeline_config, instance):
        # Get data manager for train, val, test data
        if pipeline_config['problem_type'] in ['feature_classification', 'feature_multilabel', 'feature_regression']:
            dm = DataManager(verbose=pipeline_config["data_manager_verbose"])
            if pipeline_config['test_instances'] is not None:
                dm_test = DataManager(verbose=pipeline_config["data_manager_verbose"])
        else:
            dm = ImageManager(verbose=pipeline_config["data_manager_verbose"])
            if pipeline_config['test_instances'] is not None:
                dm_test = ImageManager(verbose=pipeline_config["data_manager_verbose"])

        # Read data
        if pipeline_config['test_instances'] is not None:
            # Use given test set
            dm.read_data(instance,
                     is_classification=(pipeline_config["problem_type"] in ['feature_classification', 'feature_multilabel', 'image_classification']),
                     test_split=0.0)
            dm_test.read_data(pipeline_config['test_instances'],
                              is_classification=(pipeline_config["problem_type"] in ['feature_classification', 'feature_multilabel', 'image_classification']),
                              test_split=0.0)
            dm.X_test, dm.Y_test = dm_test.X_train, dm_test.Y_train.astype(np.int32)

        else:
            # Use test split
            dm.read_data(instance,
                is_classification=(pipeline_config["problem_type"] in ['feature_classification', 'feature_multilabel', 'image_classification']),
                test_split=pipeline_config["test_split"])

        return {"data_manager": dm}
__author__ = "Max Dippel, Michael Burkart and Matthias Urban"
__version__ = "0.0.1"
__license__ = "BSD"

import os, sys
sys.path.append(os.path.abspath(os.path.join(__file__, "..", "..", "..")))
import logging

from autoPyTorch import AutoNetClassification

from autoPyTorch.data_management.data_manager import DataManager

dm = DataManager(verbose=1)
dataset_dir = os.path.abspath(
    os.path.join(os.path.dirname(__file__), '..', '..', 'datasets'))

# choose between the 10 classification testcases on real data.
TEST_CASE = 4

if TEST_CASE == 1:
    dm.read_data(os.path.join(dataset_dir,
                              "classification/dataset_22_mfeat-zernike.csv"),
                 is_classification=True)
    # 2000 samples, 10 classes, 48 features

if TEST_CASE == 2:
    dm.read_data(os.path.join(dataset_dir, "classification/phpbL6t4U.csv"),
                 is_classification=True)
    # 13910 samples, 6 classes, 128 features

if TEST_CASE == 3:
Exemplo n.º 10
0
__author__ = "Max Dippel, Michael Burkart and Matthias Urban"
__version__ = "0.0.1"
__license__ = "BSD"

import os, sys
sys.path.append(os.path.abspath(os.path.join(__file__, "..", "..", "..")))
import logging

from autoPyTorch import AutoNetClassification

from autoPyTorch.data_management.data_manager import DataManager

dm = DataManager(verbose=1)
dataset_dir = os.path.abspath(
    os.path.join(os.path.dirname(__file__), '..', '..', 'datasets'))

# choose between the 10 classification testcases on real data.
TEST_CASE = 4

if TEST_CASE == 1:
    dm.read_data("openml:22", is_classification=True)
    # 2000 samples, 10 classes, 48 features

if TEST_CASE == 2:
    dm.read_data("openml:1476", is_classification=True)
    # 13910 samples, 6 classes, 128 features

if TEST_CASE == 3:
    dm.read_data("openml:1464", is_classification=True)
    # 748 samples, 2 classes, 4 features