Exemplo n.º 1
0
    def _generate_conformers(self, n_confs=None):
        """Generate conformers at the TS """
        from autode.conformers.conformer import Conformer
        from autode.conformers.conf_gen import get_simanl_atoms
        from autode.conformers.conformers import conf_is_unique_rmsd

        n_confs = Config.num_conformers if n_confs is None else n_confs
        self.conformers = []

        distance_consts = get_distance_constraints(self)

        with Pool(processes=Config.n_cores) as pool:
            results = [
                pool.apply_async(get_simanl_atoms, (self, distance_consts, i))
                for i in range(n_confs)
            ]

            conf_atoms_list = [res.get(timeout=None) for res in results]

        for i, atoms in enumerate(conf_atoms_list):
            conf = Conformer(name=f'{self.name}_conf{i}',
                             charge=self.charge,
                             mult=self.mult,
                             atoms=atoms,
                             dist_consts=distance_consts)

            # If the conformer is unique on an RMSD threshold
            if conf_is_unique_rmsd(conf, self.conformers):
                conf.solvent = self.solvent
                conf.graph = deepcopy(self.graph)
                self.conformers.append(conf)

        logger.info(f'Generated {len(self.conformers)} conformer(s)')
        return None
Exemplo n.º 2
0
def test_rmsd_confs():

    methane1 = Conformer(name='methane1',
                         charge=0,
                         mult=1,
                         atoms=[
                             Atom('C', -1.38718, 0.38899, 0.00000),
                             Atom('H', -0.27778, 0.38899, -0.00000),
                             Atom('H', -1.75698, 1.06232, 0.80041),
                             Atom('H', -1.75698, -0.64084, 0.18291),
                             Atom('H', -1.75698, 0.74551, -0.98332)
                         ])

    methane2 = Conformer(name='methane2',
                         charge=0,
                         mult=1,
                         atoms=[
                             Atom('C', -1.38718, 0.38899, 0.00000),
                             Atom('H', -0.43400, 0.50158, -0.55637),
                             Atom('H', -2.23299, 0.69379, -0.64998),
                             Atom('H', -1.36561, 1.03128, 0.90431),
                             Atom('H', -1.51612, -0.67068, 0.30205)
                         ])

    # Methane but rotated should have an RMSD ~ 0 Angstroms
    assert not conf_is_unique_rmsd(
        conf=methane2, conf_list=[methane1], rmsd_tol=0.1)
Exemplo n.º 3
0
    def _generate_conformers(self, n_confs=None):
        """
        Use a simulated annealing approach to generate conformers for this
        molecule.

        Keyword Arguments:
            n_confs (int): Number of conformers requested if None default to
            autode.Config.num_conformers
        """

        n_confs = n_confs if n_confs is not None else Config.num_conformers
        self.conformers = []

        if self.smiles is not None and self.rdkit_conf_gen_is_fine:
            logger.info(f'Using RDKit to gen conformers. {n_confs} requested')

            method = AllChem.ETKDGv2()
            method.pruneRmsThresh = Config.rmsd_threshold
            method.numThreads = Config.n_cores

            logger.info(
                'Running conformation generation with RDKit... running')
            conf_ids = list(
                AllChem.EmbedMultipleConfs(self.rdkit_mol_obj,
                                           numConfs=n_confs,
                                           params=method))
            logger.info('                                          ... done')

            conf_atoms_list = [
                atoms_from_rdkit_mol(self.rdkit_mol_obj, conf_id)
                for conf_id in conf_ids
            ]

            methods.add('ETKDGv2 algorithm (10.1021/acs.jcim.5b00654) '
                        f'implemented in RDKit v. {rdkit.__version__}')

        else:
            logger.info('Using repulsion+relaxed (RR) to generate conformers')
            with Pool(processes=Config.n_cores) as pool:
                results = [
                    pool.apply_async(get_simanl_atoms, (self, None, i))
                    for i in range(n_confs)
                ]
                conf_atoms_list = [res.get(timeout=None) for res in results]

            methods.add('RR algorithm (???) implemented in autodE')

        # Add the unique conformers
        for i, atoms in enumerate(conf_atoms_list):
            conf = get_conformer(name=f'{self.name}_conf{i}', species=self)
            conf.set_atoms(atoms)

            # If the conformer is unique on an RMSD threshold
            if conf_is_unique_rmsd(conf, self.conformers):
                self.conformers.append(conf)

        logger.info(f'Generated {len(self.conformers)} unique conformer(s)')
        return None
Exemplo n.º 4
0
    def _generate_conformers(self, n_confs=None):
        """
        Use a simulated annealing approach to generate conformers for this
        molecule.

        Keyword Arguments:
            n_confs (int): Number of conformers requested if None default to
            autode.Config.num_conformers
        """

        n_confs = n_confs if n_confs is not None else Config.num_conformers
        self.conformers = []

        if self.smiles is not None and self.rdkit_conf_gen_is_fine:
            logger.info(f'Using RDKit to gen conformers. {n_confs} requested')

            method = AllChem.ETKDGv2()
            method.pruneRmsThresh = Config.rmsd_threshold
            method.numThreads = Config.n_cores

            logger.info(
                'Running conformation generation with RDKit... running')
            conf_ids = list(
                AllChem.EmbedMultipleConfs(self.rdkit_mol_obj,
                                           numConfs=n_confs,
                                           params=method))
            logger.info('                                          ... done')

            conf_atoms_list = [
                get_atoms_from_rdkit_mol_object(self.rdkit_mol_obj, conf_id)
                for conf_id in conf_ids
            ]

        else:
            logger.info('Using simulated annealing to generate conformers')
            with Pool(processes=Config.n_cores) as pool:
                results = [
                    pool.apply_async(get_simanl_atoms, (self, None, i))
                    for i in range(n_confs)
                ]
                conf_atoms_list = [res.get(timeout=None) for res in results]

        for i, atoms in enumerate(conf_atoms_list):
            conf = Conformer(name=f'{self.name}_conf{i}',
                             charge=self.charge,
                             mult=self.mult,
                             atoms=atoms)

            # If the conformer is unique on an RMSD threshold
            if conf_is_unique_rmsd(conf, self.conformers):
                conf.solvent = self.solvent
                self.conformers.append(conf)

        logger.info(f'Generated {len(self.conformers)} unique conformer(s)')
        return None