def test_differentiate_args_issues():
    def f(x, y):
        f1 = sin(3 * (x**2)) + x * tan(sqrt(y * 7))
        f2 = y**(3 * x) - sin(x)
        return f1, f2

    dfdx = differentiate(f)

    # test no args
    with pytest.raises(KeyError):
        dfdx()

    # test both args
    with pytest.raises(KeyError):
        dfdx(4, x=2)

    # test incorrect kwargs key
    with pytest.raises(KeyError):
        dfdx(x=2, z=2)

    # test incorrect number of keys
    with pytest.raises(KeyError):
        dfdx(x=2)

    # test too many keys
    with pytest.raises(KeyError):
        dfdx(x=2, y=3, z=3)
def test_differentiate_scalar_function_multiple_inputs():
    def f(x, y):
        return sin(3 * (x**2)) + x * tan(sqrt(y * 7))

    dfdx = differentiate(f)
    assert np.allclose(dfdx(x=4, y=2), np.array([-14.6792, 5.49340]))
    assert np.allclose(
        dfdx(x=np.array([1, 2, 3]), y=np.array([2, 1, 4])),
        np.array([-5.25572, 9.58533, -6.78778, 1.37335, 3.41987, 6.62502]))
def test_differentiate_scalar_function_multiple_inputs():
    def f(x, y):
        f1 = sin(3 * (x**2)) + x * tan(sqrt(y * 7))
        f2 = y**(3 * x) - sin(x)
        return f1, f2

    dfdx = differentiate(f)
    result1 = np.array([[-1.46792323e+01, 5.49340116e+00],
                        [8.51804620e+03, 2.45760000e+04]])
    assert np.allclose(dfdx(x=4, y=2), result1)
def test_differentiate_vector_function():
    def f(x):
        f1 = cos(2**sin(x)) + 3 * x * sin(sqrt(x))
        f2 = x**3 - sin(x)
        return f1, f2

    dfdx = differentiate(f)
    assert np.allclose(dfdx(x=6), np.array([[-1.31673351], [107.03982971]]))
    assert np.allclose(dfdx(x=np.array([1, 3])),
                       np.array([[2.6801, 3.2193], [2.4597, 27.990]]))
def test_differentiate_scalar_function():
    def f(x):
        return sin(3 * (x**2)) + tan(sqrt(x * 7))

    dfdx = differentiate(f)
    # test kwargs
    assert np.allclose(dfdx(x=5), 28.3316)
    assert np.allclose(dfdx(x=np.array([2, 1, 3])),
                       np.array([11.4996, -4.2300, 40.3201]))
    # test args
    assert np.allclose(dfdx(5), 28.3316)
Exemplo n.º 6
0
def _newton_raphson(function, values, threshold, max_iter):
    """Returns a root found starting from values using the Newton-Raphson method

    INPUTS
    =======
    function: A function defined using the autodiffcc.ADmath methods
    values: Starting point for root-finding method as a scalar or vector
    threshold: Minimum threshold to declare convergence on a root
    max_iter: Maximum number of iterations taken for the algorithm to converge

    RETURNS
    ========
    A root of function found starting from values or raised Exception if none are found

    EXAMPLES
    =========
    >>> _newton_raphson(lambda x, y: (2 * x + y, x - 1), values=np.array([1, 2]), threshold=1e-8, max_iter=2000)
    array([ 1., -2.])
    """
    jacobian = differentiate(function)

    output_shape = len(np.array(function(*values)).flatten())

    for i in range(max_iter):
        flat_variables = values.flatten()
        jacobian_values = jacobian(*values)
        if output_shape == 1:
            if jacobian_values == 0:
                raise Exception(
                    "Newton-Raphson did not converge, try increasing max_iter or changing start_values."
                )
            else:
                flat_variables = flat_variables - function(
                    *values) / jacobian_values
        else:
            flat_variables = flat_variables - np.matmul(
                np.linalg.pinv(jacobian_values), function(*values))
        values = flat_variables.reshape(values.shape)
        if _norm(function(*values)) < threshold:
            return values
    raise Exception(
        "Newton-Raphson did not converge, try increasing max_iter or changing start_values."
    )
Exemplo n.º 7
0
def _newton_fourier(function, interval_start: np.ndarray,
                    interval_end: np.ndarray, threshold, max_iter):
    """Returns a root of the function found using the Newton-Fourier algorithm

    INPUTS
    =======
    function: A function defined using the autodiffcc.ADmath methods
    interval_start: The start of the initial interval of values on which to attempt to find a root, as an array
    interval_end: The end of the initial interval of values on which to attempt to find a root, as an array
    threshold: Minimum threshold to declare convergence on a root
    max_iter: Maximum number of iterations taken for the algorithm to converge
    
    RETURNS
    ========
    A root of function found (approximately, within the threshold) starting from the interval or raised Exception if none are found

    EXAMPLES
    =========
    >>> interval_start = np.asarray([3, 3])
    >>> interval_end = np.asarray([-3, -3])
    >>> my_root = _newton_fourier(lambda x, y: (2 * x + y - 2, y + 2), interval_start=interval_start, interval_end=interval_end, threshold=1e-8, max_iter=2000)
    >>> print(my_root)
    [ 2. -2.]
    """
    # using positional variables
    x_vars = interval_start
    z_vars = interval_end

    output_shape = len(np.array(function(*x_vars)).flatten())

    # Starting values for x_0, z_0
    flat_x = x_vars.flatten()
    flat_z = z_vars.flatten()
    # numerator of the limit for termination of Newton-Fourier
    limit_numerator = (x_vars.flatten() - z_vars.flatten())**2

    jacobian = differentiate(function)

    for i in range(max_iter):
        if output_shape == 1:
            common_jacobian = jacobian(*x_vars)
            if common_jacobian == 0:
                raise Exception(
                    "Newton-Fourier did not converge, try another interval or increasing max_iter."
                )
            flat_x = flat_x - function(*x_vars) / common_jacobian
            flat_z = flat_z - function(*z_vars) / common_jacobian
        else:
            common_jacobian = np.linalg.pinv(jacobian(*x_vars))
            flat_x = flat_x - np.matmul(common_jacobian, function(*x_vars))
            flat_z = flat_z - np.matmul(common_jacobian, function(*z_vars))
        limit_denominator = limit_numerator
        limit_numerator = flat_x - flat_z

        if limit_denominator.any() == 0:
            raise Exception(
                "Newton-Fourier did not converge, try another interval or increasing max_iter."
            )

        limit = limit_numerator / limit_denominator

        x_vars = flat_x.reshape(x_vars.shape)
        z_vars = flat_z.reshape(z_vars.shape)

        if limit.all() < threshold:
            return np.mean(np.vstack([x_vars, z_vars]), axis=0)

    if _norm(function(*x_vars)) < threshold and _norm(
            function(*z_vars)) < threshold:
        raise Exception(
            f"Newton-Fourier did not converge, but two roots were found: {x_vars} and {z_vars}. Try narrowing the interval."
        )
    raise Exception(
        "Newton-Fourier did not converge, try another interval or increasing max_iter."
    )
def test_differentiate_vector_function_0_der():
    def f(x, y):
        return 2, 3

    assert np.allclose(differentiate(f)(3, 1), 0)
def test_differentiate_scalar_function_0_der():
    def f(x):
        return 2

    assert np.isclose(differentiate(f)(3), 0)