Exemplo n.º 1
0
def cos(ad):
    """Returns autodiff instance of cos(x)

    INPUTS
    =======
    ad: autodiff instance

    RETURNS
    ========
    anew: autodiff instance
       returns a new autodiff instance with updated value and derivative(s)

    EXAMPLES
    =========
    >>> from autodiffpy import autodiffmod as ad
    >>> from autodiffpy import autodiff_math as admath
    >>> x = ad.autodiff('x', 10)
    >>> f1 = admath.cos(x)
    >>> print(f1.val, f1.der)
    [-0.83907153] {'x': array([0.54402111])}
    """
    try:
        anew = autodiff.autodiff(name=ad.name, val = np.cos(ad.val), der = ad.der)
        anew.lparent = ad
        anew.function = cos

        for key in ad.der:
            if ad.der[key].shape == (-1*np.sin(ad.val)).shape:
                anew.der[key] = ad.der[key]*-1*np.sin(ad.val)
            else:
                anew.der[key] = np.dot(-1*np.sin(ad.val), ad.der[key])
        ad.back_partial_der = -1*np.sin(ad.val)
        return anew
    except AttributeError:
        raise AttributeError("Error: input should be autodiff instance only.")
Exemplo n.º 2
0
def logistic(ad, A=1.0, k=1.0, x0=0.0):
    '''Returns autodiff instance of the logistic function of x

    INPUTS
    ==========
    ad: autodiff instance
    A: maximum value of this logistic function
    k: growth rate (steepness) of the logistic function
    x0: x-axis location of the logistic function's midpoint

    RETURNS
    ==========
    anew: autodiff instance with updated values and derivatives

    EXAMPLES
    ==========
    >>> import numpy as np
    >>> from autodiffpy import autodiffmod as autodiff
    >>> from autodiffpy import autodiff_math as admath
    >>> x = autodiff.autodiff('x', 5)
    >>> f1 = admath.logistic(x, A=3, k=4, x0=7)
    >>> testresult = 3.0/(1 + np.exp(-4*(5-7)))
    >>> print(f1.val == [testresult])
    [ True]
    >>> print(f1.der['x'] == [12*np.exp(-4*(5 - 7))/1.0/((np.exp(-4*(5 - 7)) + 1)**2)])
    [ True]
    '''

    try:
        # Create a new autodiff instance with forward result
        anew = autodiff.autodiff(name=ad.name, val = (A/1.0/(1.0 + np.exp(-1.0*k*(ad.val - x0)))), der = ad.der)
        anew.function = logistic
        anew.lparent = ad


        for key in ad.der:
            if ad.der[key].shape == (A*k*np.exp(-1.0*k*(ad.val - x0))/1.0/((np.exp(-1.0*k*(ad.val - x0)) + 1.0)**2)).shape:
                anew.der[key] = ad.der[key]*A*k*np.exp(-1.0*k*(ad.val - x0))/1.0/((np.exp(-1.0*k*(ad.val - x0)) + 1.0)**2)
            else:
                anew.der[key] = np.dot(A*k*np.exp(-1.0*k*(ad.val - x0))/1.0/((np.exp(-1.0*k*(ad.val - x0)) + 1.0)**2), ad.der[key])


        # Update with the backpropagation derivatives
        ad.back_partial_der = (A*k)*np.exp(-1.0*k*(ad.val - x0))/1.0/((np.exp(-1.0*k*(ad.val - x0)) + 1.0)**2)

        return anew
    except AttributeError: #If non-autodiff instance passed
        raise AttributeError("Error: input should be autodiff instance only.")
    except TypeError:
        raise TypeError("Error: input attributes A, k, and x0 should be numbers.")
Exemplo n.º 3
0
def tanh(ad):
    '''Returns autodiff instance of tanh(x)

    INPUTS
    ==========
    ad: autodiff instance

    RETURNS
    ==========
    anew: autodiff instance with updated values and derivatives

    EXAMPLES
    ==========
    >>> import numpy as np
    >>> from autodiffpy import autodiffmod as autodiff
    >>> from autodiffpy import autodiff_math as admath
    >>> x = autodiff.autodiff('x', 5)
    >>> f1 = admath.tanh(x)
    >>> print(f1.val == [np.tanh(5)])
    [ True]
    >>> print(f1.der['x'] == [(1.0/np.cosh(5))**2])
    [ True]
    '''

    try:
        # Create a new autodiff instance with forward result
        anew = autodiff.autodiff(name=ad.name, val = np.tanh(ad.val), der = ad.der)
        anew.function = tanh
        anew.lparent = ad


        for key in ad.der:
            if ad.der[key].shape == ((1.0/np.cosh(ad.val))**2).shape:
                anew.der[key] = ad.der[key]*((1.0/np.cosh(ad.val))**2)
            else:
                anew.der[key] = np.dot(((1.0/np.cosh(ad.val))**2), ad.der[key])


        # Update with the backpropagation derivatives

        ad.back_partial_der = ((1.0/np.cosh(ad.val))**2)

        return anew
    except AttributeError: #If non-autodiff instance passed
        raise AttributeError("Error: input should be autodiff instance only.")
Exemplo n.º 4
0
def log(ad, base = np.e):

    '''Returns autodiff instance of log(x)

    INPUTS
    ==========
    ad: autodiff instance
    base: base of the log. By default, log(x) is natural log.

    RETURNS
    ==========
    anew: autodiff instance with updated values and derivatives

    EXAMPLES
    ==========
    >>> import numpy as np
    >>> from autodiffpy import autodiffmod as autodiff
    >>> from autodiffpy import autodiff_math as admath
    >>> x = autodiff.autodiff('x', np.exp(2))
    >>> f1 = admath.log(x)
    >>> print(f1.val)
    [2.]
    >>> print(f1.der['x'])
    [0.13533528]
    '''
    try:
        if np.min(ad.val) <= 0:
            raise ValueError('Error: cannot evaluate the log of a nonpositive number.')

        anew = autodiff.autodiff(name = ad.name, val = np.log(ad.val)/np.log(base), der = ad.der)
        anew.lparent = ad
        anew.function = log


        for key in ad.der:
            if ad.der[key].shape == (ad.val*(np.log(base))).shape:
                anew.der[key] = ad.der[key]/(ad.val*(np.log(base)))
            else:
                anew.der[key] = np.dot(1/(ad.val*(np.log(base))), ad.der[key])

        ad.back_partial_der = 1/(ad.val*(np.log(base)))
        return anew
    except AttributeError:
        raise AttributeError("Error: input should be autodiff instance only.")
Exemplo n.º 5
0
def sqrt(ad):
    """Returns autodiff instance of sqrt(x)

    INPUTS
    =======
    ad: autodiff instance

    RETURNS
    ========
    anew: autodiff instance
       returns a new autodiff instance with updated value and derivative(s)

    EXAMPLES
    =========
    >>> from autodiffpy import autodiffmod as autodiff
    >>> from autodiffpy import autodiff_math as admath
    >>> x = autodiff.autodiff('x', 3)
    >>> y = autodiff.autodiff('y', 4)
    >>> f1 = admath.sqrt(x*y)
    >>> print(f1.val, f1.der)
    [3.46410162] {'x': array([0.57735027]), 'y': array([0.4330127])}
    """
    try:
        # Check that the domain of the square root is valid
        if np.min(ad.val) < 0:
            raise ValueError('Error: cannot evaluate the square root of a negative number(s).')

        # Create a new autodiff instance with forward result
        anew = autodiff.autodiff(name = ad.name, val = np.sqrt(ad.val), der = ad.der)

        for key in ad.der:
            if ad.der[key].shape == (1/(2*np.sqrt(ad.val))).shape:
                anew.der[key] = 1/(2*np.sqrt(ad.val))*ad.der[key]
            else:
                anew.der[key] = np.dot(1/(2*np.sqrt(ad.val)), ad.der[key])


        # Update with the backpropagation derivatives
        anew.lparent = ad
        anew.function = sqrt
        ad.back_partial_der = (1/2.0)*((ad.val)**(-1/2.0))
        return anew
    except AttributeError: #If non-autodiff instance passed
        raise AttributeError("Error: input should be autodiff instance only.")
Exemplo n.º 6
0
def arcsin(ad):
    """Returns autodiff instance of arcsin(x)

    INPUTS
    =======
    ad: autodiff instance

    RETURNS
    ========
    anew: autodiff instance
       returns a new autodiff instance with updated value and derivative(s)

    EXAMPLES
    =========
    >>> from autodiffpy import autodiffmod as autodiff
    >>> from autodiffpy import autodiff_math as admath
    >>> x = autodiff.autodiff('x', 0.1)
    >>> f1 = admath.arcsin(x)
    >>> print(f1.val, f1.der)
    [0.10016742] {'x': array([1.00503782])}
    """
    try:

        if min(ad.val**2) > 1:

            raise ValueError('Error: invalid value encountered while calculating derivatives.')
        anew = autodiff.autodiff(name=ad.name, val = np.arcsin(ad.val), der = ad.der)
        anew.function = arcsin
        anew.lparent = ad

        for key in ad.der:

            if ad.der[key].shape == (1/np.sqrt(1 - ad.val**2)).shape:
                anew.der[key] = 1/np.sqrt(1 - ad.val**2)*ad.der[key]
            else:
                anew.der[key] = np.dot(1/np.sqrt(1 - ad.val**2), ad.der[key])

        ad.back_partial_der = 1/np.sqrt(1 - ad.val**2)
        return anew
    except AttributeError:
        raise AttributeError("Error: input should be autodiff instance only.")
Exemplo n.º 7
0
def arctan(ad):
    """Returns autodiff instance of arctan(x)

    INPUTS
    =======
    ad: autodiff instance

    RETURNS
    ========
    anew: autodiff instance
       returns a new autodiff instance with updated value and derivative(s)

    EXAMPLES
    =========
    >>> from autodiffpy import autodiffmod as autodiff
    >>> from autodiffpy import autodiff_math as admath
    >>> x = autodiff.autodiff('x', 0.2)
    >>> f1 = admath.arctan(x)
    >>> print(f1.val, f1.der)
    [0.19739556] {'x': array([0.96153846])}
    """
    try:
        anew = autodiff.autodiff(name=ad.name, val = np.arctan(ad.val), der = ad.der)
        anew.function = arctan
        anew.lparent = ad

        for key in ad.der:

            if ad.der[key].shape == (1/(1+ad.val**2)).shape:
                anew.der[key] = 1/(1+ad.val**2)*ad.der[key]
            else:
                anew.der[key] = np.dot(1/(1+ad.val**2), ad.der[key])

        ad.back_partial_der = 1/(1+ad.val**2)
        return anew
    except AttributeError:
        raise AttributeError("Error: input should be autodiff instance only.")
Exemplo n.º 8
0
def exp(ad):
    '''Returns autodiff instance of exp(x)

    INPUTS
    ==========
    ad: autodiff instance

    RETURNS
    ==========
    anew: autodiff instance with updated values and derivatives

    EXAMPLES
    ==========
    >>> import numpy as np
    >>> from autodiffpy import autodiffmod as autodiff
    >>> from autodiffpy import autodiff_math as admath
    >>> x = autodiff.autodiff('x', 10)
    >>> f1 = admath.exp(x)
    >>> print(f1.val == [np.exp(10)])
    [ True]
    >>> print(f1.der['x'] == [np.exp(10)])
    [ True]
    '''

    try:
        anew = autodiff.autodiff(name=ad.name, val = np.exp(ad.val), der = ad.der)
        anew.lparent = ad
        anew.function = exp
        for key in ad.der:
            if ad.der[key].shape == anew.val.shape:
                anew.der[key] = ad.der[key]*anew.val
            else:
                anew.der[key] = np.dot(anew.val, ad.der[key])
        ad.back_partial_der = anew.val
        return anew
    except AttributeError:
        raise AttributeError("Error: input should be autodiff instance only.")
Exemplo n.º 9
0
def tan(ad):
    """Returns autodiff instance of tan(x)

    INPUTS
    =======
    ad: autodiff instance

    RETURNS
    ========
    anew: autodiff instance
       returns a new autodiff instance with updated value and derivative(s)

    EXAMPLES
    =========
    >>> from autodiffpy import autodiffmod as autodiff
    >>> from autodiffpy import autodiff_math as admath
    >>> x = autodiff.autodiff('x', 10)
    >>> f1 = admath.tan(x)
    >>> print(f1.val, f1.der)
    [0.64836083] {'x': array([1.42037176])}
    """
    try:
        anew = autodiff.autodiff(name=ad.name, val = np.tan(ad.val), der = ad.der)
        anew.lparent = ad
        anew.function = tan

        for key in ad.der:
            if ad.der[key].shape == (1/(np.cos(ad.val))**2).shape:
                anew.der[key] = 1/(np.cos(ad.val))**2*ad.der[key]
            else:
                anew.der[key] = np.dot(1/(np.cos(ad.val))**2, ad.der[key])

        ad.back_partial_der = 1/(np.cos(ad.val))**2
        return anew
    except AttributeError:
        raise AttributeError("Error: input should be autodiff instance only.")