Exemplo n.º 1
0
    def tuning_job_state_mcmc(X, Y) -> TuningJobState:
        Y = [dictionarize_objective(y) for y in Y]

        return TuningJobState(
            HyperparameterRanges_Impl(HyperparameterRangeContinuous('x', -4., 4., LinearScaling())),
            [CandidateEvaluation(x, y) for x, y in zip(X, Y)],
            [], []
        )
Exemplo n.º 2
0
def test_compute_blacklisted_candidates(
        hp_ranges: HyperparameterRanges_Impl,
        candidate_evaluations: List[CandidateEvaluation],
        failed_candidates: List[Candidate],
        pending_evaluations: List[PendingEvaluation],
        expected: Set[Candidate]):
    state = TuningJobState(hp_ranges, candidate_evaluations, failed_candidates,
                           pending_evaluations)
    actual = compute_blacklisted_candidates(state)
    assert set(expected) == set(actual)
Exemplo n.º 3
0
def multi_algo_state():
    def _candidate_evaluations(num):
        return [
            CandidateEvaluation(candidate=(i, ),
                                metrics=dictionarize_objective(float(i)))
            for i in range(num)
        ]

    return {
        '0':
        TuningJobState(
            hp_ranges=HyperparameterRanges_Impl(
                HyperparameterRangeContinuous('a1_hp_1', -5.0, 5.0,
                                              LinearScaling(), -5.0, 5.0)),
            candidate_evaluations=_candidate_evaluations(2),
            failed_candidates=[(i, ) for i in range(3)],
            pending_evaluations=[PendingEvaluation((i, ))
                                 for i in range(100)]),
        '1':
        TuningJobState(hp_ranges=HyperparameterRanges_Impl(),
                       candidate_evaluations=_candidate_evaluations(5),
                       failed_candidates=[],
                       pending_evaluations=[]),
        '2':
        TuningJobState(
            hp_ranges=HyperparameterRanges_Impl(),
            candidate_evaluations=_candidate_evaluations(3),
            failed_candidates=[(i, ) for i in range(10)],
            pending_evaluations=[PendingEvaluation((i, )) for i in range(1)]),
        '3':
        TuningJobState(hp_ranges=HyperparameterRanges_Impl(),
                       candidate_evaluations=_candidate_evaluations(6),
                       failed_candidates=[],
                       pending_evaluations=[]),
        '4':
        TuningJobState(hp_ranges=HyperparameterRanges_Impl(),
                       candidate_evaluations=_candidate_evaluations(120),
                       failed_candidates=[],
                       pending_evaluations=[]),
    }
Exemplo n.º 4
0
def default_models() -> List[GPMXNetModel]:
    X = [
        (0.0, 0.0),
        (1.0, 0.0),
        (0.0, 1.0),
        (1.0, 1.0),
        (0.0, 0.0),  # same evals are added multiple times to force GP to unlearn prior
        (1.0, 0.0),
        (0.0, 1.0),
        (1.0, 1.0),
        (0.0, 0.0),
        (1.0, 0.0),
        (0.0, 1.0),
        (1.0, 1.0),
    ]
    Y = [dictionarize_objective(np.sum(x) * 10.0) for x in X]

    state = TuningJobState(
        HyperparameterRanges_Impl(
            HyperparameterRangeContinuous('x', 0.0, 1.0, LinearScaling()),
            HyperparameterRangeContinuous('y', 0.0, 1.0, LinearScaling()),
        ),
        [
            CandidateEvaluation(x, y) for x, y in zip(X, Y)
        ],
        [], [],
    )
    random_seed = 0

    gpmodel = default_gpmodel(
        state, random_seed=random_seed,
        optimization_config=DEFAULT_OPTIMIZATION_CONFIG
    )

    gpmodel_mcmc = default_gpmodel_mcmc(
        state, random_seed=random_seed,
        mcmc_config=DEFAULT_MCMC_CONFIG
    )

    return [
        GPMXNetModel(state, DEFAULT_METRIC, random_seed, gpmodel,
                     fit_parameters=True, num_fantasy_samples=20),
        GPMXNetModel(state, DEFAULT_METRIC, random_seed, gpmodel_mcmc,
                     fit_parameters=True, num_fantasy_samples=20)]
Exemplo n.º 5
0
def tuning_job_state() -> TuningJobState:
    X = [
        (0.0, 0.0),
        (1.0, 0.0),
        (0.0, 1.0),
        (1.0, 1.0),
    ]
    Y = [dictionarize_objective(np.sum(x) * 10.0) for x in X]

    return TuningJobState(
        HyperparameterRanges_Impl(
            HyperparameterRangeContinuous('x', 0.0, 1.0, LinearScaling()),
            HyperparameterRangeContinuous('y', 0.0, 1.0, LinearScaling()),
        ),
        [
            CandidateEvaluation(x, y) for x, y in zip(X, Y)
        ],
        [], []
    )
Exemplo n.º 6
0
def test_get_internal_candidate_evaluations():
    """we do not test the case with no evaluations, as it is assumed
    that there will be always some evaluations generated in the beginning
    of the BO loop."""

    candidates = [
        CandidateEvaluation((2, 3.3, 'X'), dictionarize_objective(5.3)),
        CandidateEvaluation((1, 9.9, 'Y'), dictionarize_objective(10.9)),
        CandidateEvaluation((7, 6.1, 'X'), dictionarize_objective(13.1)),
    ]

    state = TuningJobState(
        hp_ranges=HyperparameterRanges_Impl(
            HyperparameterRangeInteger('integer', 0, 10, LinearScaling()),
            HyperparameterRangeContinuous('real', 0, 10, LinearScaling()),
            HyperparameterRangeCategorical('categorical', ('X', 'Y')),
        ),
        candidate_evaluations=candidates,
        failed_candidates=[candidates[0].candidate
                           ],  # these should be ignored by the model
        pending_evaluations=[])

    result = get_internal_candidate_evaluations(state,
                                                DEFAULT_METRIC,
                                                normalize_targets=True,
                                                num_fantasize_samples=20)

    assert len(result.X.shape) == 2, "Input should be a matrix"
    assert len(result.y.shape) == 2, "Output should be a matrix"

    assert result.X.shape[0] == len(candidates)
    assert result.y.shape[
        -1] == 1, "Only single output value per row is suppored"

    assert np.abs(np.mean(
        result.y)) < 1e-8, "Mean of the normalized outputs is not 0.0"
    assert np.abs(np.std(result.y) -
                  1.0) < 1e-8, "Std. of the normalized outputs is not 1.0"

    np.testing.assert_almost_equal(result.mean, 9.766666666666666)
    np.testing.assert_almost_equal(result.std, 3.283629428273267)
Exemplo n.º 7
0
def default_models(do_mcmc=True) -> List[GPMXNetModel]:
    X = [
        (0.0, 0.0),
        (1.0, 0.0),
        (0.0, 1.0),
        (1.0, 1.0),
    ]
    Y = [dictionarize_objective(np.sum(x) * 10.0) for x in X]

    state = TuningJobState(
        HyperparameterRanges_Impl(
            HyperparameterRangeContinuous('x', 0.0, 1.0, LinearScaling()),
            HyperparameterRangeContinuous('y', 0.0, 1.0, LinearScaling()),
        ), [CandidateEvaluation(x, y) for x, y in zip(X, Y)], [], [])
    random_seed = 0

    gpmodel = default_gpmodel(state,
                              random_seed=random_seed,
                              optimization_config=DEFAULT_OPTIMIZATION_CONFIG)
    result = [
        GPMXNetModel(state,
                     DEFAULT_METRIC,
                     random_seed,
                     gpmodel,
                     fit_parameters=True,
                     num_fantasy_samples=20)
    ]
    if do_mcmc:
        gpmodel_mcmc = default_gpmodel_mcmc(state,
                                            random_seed=random_seed,
                                            mcmc_config=DEFAULT_MCMC_CONFIG)
        result.append(
            GPMXNetModel(state,
                         DEFAULT_METRIC,
                         random_seed,
                         gpmodel_mcmc,
                         fit_parameters=True,
                         num_fantasy_samples=20))
    return result
Exemplo n.º 8
0
def test_gp_fantasizing():
    """
    Compare whether acquisition function evaluations (values, gradients) with
    fantasizing are the same as averaging them by hand.
    """
    random_seed = 4567
    _set_seeds(random_seed)
    num_fantasy_samples = 10
    num_pending = 5

    hp_ranges = HyperparameterRanges_Impl(
        HyperparameterRangeContinuous('x', 0.0, 1.0, LinearScaling()),
        HyperparameterRangeContinuous('y', 0.0, 1.0, LinearScaling()))
    X = [
        (0.0, 0.0),
        (1.0, 0.0),
        (0.0, 1.0),
        (1.0, 1.0),
    ]
    num_data = len(X)
    Y = [dictionarize_objective(np.random.randn(1, 1)) for _ in range(num_data)]
    # Draw fantasies. This is done for a number of fixed pending candidates
    # The model parameters are fit in the first iteration, when there are
    # no pending candidates

    # Note: It is important to not normalize targets, because this would be
    # done on the observed targets only, not the fantasized ones, so it
    # would be hard to compare below.
    pending_evaluations = []
    for _ in range(num_pending):
        pending_cand = tuple(np.random.rand(2,))
        pending_evaluations.append(PendingEvaluation(pending_cand))
    state = TuningJobState(
        hp_ranges,
        [CandidateEvaluation(x, y) for x, y in zip(X, Y)],
        failed_candidates=[],
        pending_evaluations=pending_evaluations)
    gpmodel = default_gpmodel(
        state, random_seed, optimization_config=DEFAULT_OPTIMIZATION_CONFIG)
    model = GPMXNetModel(
        state, DEFAULT_METRIC, random_seed, gpmodel, fit_parameters=True,
        num_fantasy_samples=num_fantasy_samples, normalize_targets=False)
    fantasy_samples = model.fantasy_samples
    # Evaluate acquisition function and gradients with fantasizing
    num_test = 50
    X_test = np.vstack([hp_ranges.to_ndarray(
        tuple(np.random.rand(2,))) for _ in range(num_test)])
    acq_func = EIAcquisitionFunction(model)
    fvals, grads = acq_func.compute_acq_with_gradients(X_test)
    # Do the same computation by averaging by hand
    fvals_cmp = np.empty((num_fantasy_samples,) + fvals.shape)
    grads_cmp = np.empty((num_fantasy_samples,) + grads.shape)
    X_full = X + state.pending_candidates
    for it in range(num_fantasy_samples):
        Y_full = Y + [dictionarize_objective(eval.fantasies[DEFAULT_METRIC][:, it])
                      for eval in fantasy_samples]
        state2 = TuningJobState(
            hp_ranges,
            [CandidateEvaluation(x, y) for x, y in zip(X_full, Y_full)],
            failed_candidates=[],
            pending_evaluations=[])
        # We have to skip parameter optimization here
        model2 = GPMXNetModel(
            state2, DEFAULT_METRIC, random_seed, gpmodel,
            fit_parameters=False, num_fantasy_samples=num_fantasy_samples,
            normalize_targets=False)
        acq_func2 = EIAcquisitionFunction(model2)
        fvals_, grads_ = acq_func2.compute_acq_with_gradients(X_test)
        fvals_cmp[it, :] = fvals_
        grads_cmp[it, :] = grads_
    # Comparison
    fvals2 = np.mean(fvals_cmp, axis=0)
    grads2 = np.mean(grads_cmp, axis=0)
    assert np.allclose(fvals, fvals2)
    assert np.allclose(grads, grads2)