Exemplo n.º 1
0
def test_when_trainer_fit_and_deleted_models_load_back_correctly_and_can_predict(
        temp_model_path, hyperparameters, low_memory):
    trainer = AutoTimeSeriesTrainer(path=temp_model_path,
                                    eval_metric="MAPE",
                                    prediction_length=2)
    trainer.fit(
        train_data=DUMMY_TS_DATAFRAME,
        hyperparameters=hyperparameters,
        val_data=DUMMY_TS_DATAFRAME,
    )
    model_names = copy.copy(trainer.get_model_names())
    trainer.save()
    del trainer

    loaded_trainer = AutoTimeSeriesTrainer.load(path=temp_model_path)

    for m in model_names:
        loaded_model = loaded_trainer.load_model(m)
        if isinstance(loaded_model, TimeSeriesEnsembleWrapper):
            continue

        predictions = loaded_model.predict(DUMMY_TS_DATAFRAME)

        assert isinstance(predictions, TimeSeriesDataFrame)

        predicted_item_index = predictions.index.levels[0]
        assert all(
            predicted_item_index == DUMMY_TS_DATAFRAME.index.levels[0])  # noqa
        assert all(len(predictions.loc[i]) == 2 for i in predicted_item_index)
        assert not np.any(np.isnan(predictions))
Exemplo n.º 2
0
def test_given_hyperparameters_with_spaces_and_custom_model_when_trainer_called_then_hpo_is_performed(
    temp_model_path, ):
    hyperparameters = {
        GenericGluonTSModelFactory(MQRNNEstimator): {
            "epochs": ag.Int(1, 4)
        }
    }
    # mock the default hps factory to prevent preset hyperparameter configurations from
    # creeping into the test case
    with mock.patch("autogluon.timeseries.models.presets.get_default_hps"
                    ) as default_hps_mock:
        default_hps_mock.return_value = defaultdict(dict)
        trainer = AutoTimeSeriesTrainer(path=temp_model_path)
        trainer.fit(
            train_data=DUMMY_TS_DATAFRAME,
            hyperparameters=hyperparameters,
            val_data=DUMMY_TS_DATAFRAME,
            hyperparameter_tune=True,
        )
        leaderboard = trainer.leaderboard()

    assert len(leaderboard) == 4 + 1  # ensemble

    config_history = next(iter(trainer.hpo_results.values()))["config_history"]
    assert len(config_history) == 4
    assert all(1 <= model["epochs"] <= 4 for model in config_history.values())
Exemplo n.º 3
0
def test_given_repeating_model_when_trainer_called_incrementally_then_name_collisions_are_prevented(
    temp_model_path,
    hyperparameter_list,
    expected_number_of_unique_names,
    expected_suffixes,
):
    trainer = AutoTimeSeriesTrainer(path=temp_model_path)

    # incrementally train with new hyperparameters
    for hp in hyperparameter_list:
        trainer.fit(
            train_data=DUMMY_TS_DATAFRAME,
            hyperparameters=hp,
            val_data=DUMMY_TS_DATAFRAME,
        )

    model_names = trainer.get_model_names()

    if trainer.enable_ensemble:
        expected_number_of_unique_names += 1
    assert len(model_names) == expected_number_of_unique_names
    for suffix in expected_suffixes:
        assert any(name.endswith(suffix) for name in model_names)

    if not trainer.enable_ensemble:
        # there should be no edges in the model graph without ensembling
        assert not trainer.model_graph.edges
Exemplo n.º 4
0
def test_given_hyperparameters_when_trainer_fit_then_freq_set_correctly(
        temp_model_path, hyperparameters):
    trainer = AutoTimeSeriesTrainer(path=temp_model_path, eval_metric="MAPE")
    trainer.fit(
        train_data=DUMMY_TS_DATAFRAME,
        hyperparameters=hyperparameters,
        val_data=DUMMY_TS_DATAFRAME,
    )

    for model_name in trainer.get_model_names():
        model = trainer.load_model(model_name)
        assert model.freq == DUMMY_TS_DATAFRAME.freq
Exemplo n.º 5
0
def test_given_hyperparameters_when_trainer_called_then_leaderboard_is_correct(
        temp_model_path, eval_metric, hyperparameters, expected_board_length):
    trainer = AutoTimeSeriesTrainer(path=temp_model_path,
                                    eval_metric=eval_metric)
    trainer.fit(
        train_data=DUMMY_TS_DATAFRAME,
        hyperparameters=hyperparameters,
        val_data=DUMMY_TS_DATAFRAME,
    )
    leaderboard = trainer.leaderboard()

    expected_board_length += int(trainer.enable_ensemble)
    assert len(leaderboard) == expected_board_length
    assert np.all(leaderboard["score_val"] < 0)  # all MAPEs should be negative
Exemplo n.º 6
0
def trained_trainers():
    trainers = {}
    model_paths = []
    for hp in TEST_HYPERPARAMETER_SETTINGS:
        temp_model_path = tempfile.mkdtemp()
        trainer = AutoTimeSeriesTrainer(
            path=temp_model_path + os.path.sep,
            eval_metric="MAPE",
            prediction_length=3,
        )
        trainer.fit(
            train_data=DUMMY_TS_DATAFRAME,
            val_data=DUMMY_TS_DATAFRAME,
            hyperparameters=hp,
        )
        trainers[repr(hp)] = trainer
        model_paths.append(temp_model_path)

    yield trainers

    for td in model_paths:
        shutil.rmtree(td)
Exemplo n.º 7
0
def test_given_hyperparameters_with_spaces_to_prophet_when_trainer_called_then_hpo_is_performed(
    temp_model_path, ):
    hyperparameters = {"Prophet": {"n_changepoints": ag.Int(1, 4)}}
    # mock the default hps factory to prevent preset hyperparameter configurations from
    # creeping into the test case
    with mock.patch("autogluon.timeseries.models.presets.get_default_hps"
                    ) as default_hps_mock:
        default_hps_mock.return_value = defaultdict(dict)
        trainer = AutoTimeSeriesTrainer(path=temp_model_path)
        trainer.fit(
            train_data=DUMMY_TS_DATAFRAME,
            hyperparameters=hyperparameters,
            val_data=DUMMY_TS_DATAFRAME,
            hyperparameter_tune=True,
        )
        leaderboard = trainer.leaderboard()

    assert len(leaderboard) == 4 + 1

    config_history = trainer.hpo_results["Prophet"]["config_history"]
    assert len(config_history) == 4
    assert all(1 <= model["n_changepoints"] <= 4
               for model in config_history.values())