Exemplo n.º 1
0
def binary_ufunc_check(fun, lims_A=[-2, 2], lims_B=[-2, 2], test_complex=True):
    T_A = lambda x: transform(lims_A, x)
    T_B = lambda x: transform(lims_B, x)
    scalar_int = 1
    scalar = 0.6
    vector = npr.rand(2)
    mat = npr.rand(3, 2)
    mat2 = npr.rand(1, 2)
    combo_check(
        fun, (0, 1),
        [T_A(scalar),
         T_A(scalar_int),
         T_A(vector),
         T_A(mat),
         T_A(mat2)],
        [T_B(scalar),
         T_B(scalar_int),
         T_B(vector),
         T_B(mat),
         T_B(mat2)])
    if test_complex:
        comp = 0.6 + 0.3j
        matc = npr.rand(3, 2) + 0.1j * npr.rand(3, 2)
        combo_check(
            fun, (0, 1),
            [T_A(scalar),
             T_A(comp),
             T_A(vector),
             T_A(matc),
             T_A(mat2)],
            [T_B(scalar),
             T_B(comp),
             T_B(vector),
             T_B(matc),
             T_B(mat2)])
Exemplo n.º 2
0
def unary_ufunc_check(fun, lims=[-2, 2]):
    scalar_int = transform(lims, 1)
    scalar = transform(lims, 0.4)
    vector = transform(lims, npr.rand(2))
    mat    = transform(lims, npr.rand(3, 2))
    mat2   = transform(lims, npr.rand(1, 2))
    combo_check(fun, (0,), [scalar_int, scalar, vector, mat, mat2])
Exemplo n.º 3
0
def binary_ufunc_check(fun, lims_A=[-2, 2], lims_B=[-2, 2]):
    T_A = lambda x : transform(lims_A, x)
    T_B = lambda x : transform(lims_B, x)
    scalar = 0.6
    vector = npr.rand(2)
    mat    = npr.rand(3, 2)
    mat2   = npr.rand(1, 2)
    combo_check(fun, (0, 1), [T_A(scalar), T_A(vector), T_A(mat), T_A(mat2)],
                             [T_B(scalar), T_B(vector), T_B(mat), T_B(mat2)])
Exemplo n.º 4
0
def test_third_derivative():
    fun = lambda x : np.sin(np.sin(x) + np.sin(x))
    df = grad(fun)
    ddf = grad(fun)
    dddf = grad(fun)
    check_grads(fun, npr.randn())
    check_grads(df, npr.rand())
    check_grads(ddf, npr.rand())
    check_grads(dddf, npr.rand())
Exemplo n.º 5
0
def unary_ufunc_check(fun, lims=[-2, 2], test_complex=True):
    scalar_int = transform(lims, 1)
    scalar = transform(lims, 0.4)
    vector = transform(lims, npr.rand(2))
    mat    = transform(lims, npr.rand(3, 2))
    mat2   = transform(lims, npr.rand(1, 2))
    combo_check(fun, (0,), [scalar_int, scalar, vector, mat, mat2])
    if test_complex:
        comp = transform(lims, 0.4) + 0.1j * transform(lims, 0.3)
        matc = transform(lims, npr.rand(3, 2)) + 0.1j * npr.rand(3, 2)
        combo_check(fun, (0,), [comp, matc])
Exemplo n.º 6
0
def test_power_arg0():
    # the +1.'s here are to avoid regimes where numerical diffs fail
    make_fun = lambda y: lambda x: np.power(x, y)
    fun = make_fun(npr.randn()**2 + 1.)
    d_fun = grad(fun)
    check_grads(fun, npr.rand()**2 + 1.)
    check_grads(d_fun, npr.rand()**2 + 1.)

    # test y == 0. as a special case, c.f. #116
    fun = make_fun(0.)
    assert grad(fun)(0.) == 0.
    assert grad(grad(fun))(0.) == 0.
Exemplo n.º 7
0
def binary_ufunc_check_no_same_args(fun, lims_A=[-2, 2], lims_B=[-2, 2], test_complex=True, **kwargs):
    T_A = lambda x : transform(lims_A, x)
    T_B = lambda x : transform(lims_B, x)
    scalar1 = 0.6;   scalar2 = 0.7
    vector1 = npr.rand(2);  vector2 = npr.rand(2)
    mat11   = npr.rand(3, 2); mat12 = npr.rand(3, 2)
    mat21   = npr.rand(1, 2); mat22 = npr.rand(1, 2)
    check = combo_check(fun, (0, 1), **kwargs)
    check([T_A(scalar1), T_A(vector1), T_A(mat11), T_A(mat21)],
          [T_B(scalar2), T_B(vector2), T_B(mat12), T_B(mat22)])
    if test_complex:
        comp1 = 0.6 + 0.3j; comp2 = 0.1 + 0.2j
        matc1 = npr.rand(3, 2) + 0.1j * npr.rand(3, 2)
        matc2 = npr.rand(3, 2) + 0.1j * npr.rand(3, 2)
        check([T_A(scalar1), T_A(comp1), T_A(vector1), T_A(matc1),  T_A(mat21)],
              [T_B(scalar2), T_B(comp2), T_B(vector2), T_B(matc2), T_B(mat22)])
Exemplo n.º 8
0
def test_norm_logpdf():
    x = npr.randn()
    l = npr.randn()
    scale=npr.rand()**2 + 1.1
    fun = autograd.scipy.stats.norm.logpdf
    d_fun = grad(fun)
    check_grads(fun, x, l, scale)
    check_grads(d_fun, x, l, scale)
Exemplo n.º 9
0
Arquivo: gmm.py Projeto: mattjj/svae
def init_pgm_param(K, N, alpha, niw_conc=10., random_scale=0.):
    def init_niw_natparam(N):
        nu, S, m, kappa = N+niw_conc, (N+niw_conc)*np.eye(N), np.zeros(N), niw_conc
        m = m + random_scale * npr.randn(*m.shape)
        return niw.standard_to_natural(S, m, kappa, nu)

    dirichlet_natparam = alpha * (npr.rand(K) if random_scale else np.ones(K))
    niw_natparam = np.stack([init_niw_natparam(N) for _ in range(K)])

    return dirichlet_natparam, niw_natparam
Exemplo n.º 10
0
    def variational_objective(params):
        """Provides a stochastic estimate of the variational lower bound."""
        u1_mean, u1_cov_fac,h_mean, h_cov_fac = unpack_params(params,'1')
        u2_mean,u2_cov_fac,_,_ = unpack_params(params,'2')


        log_prob=0
        for i in range(num_samples):
            sample_u1 = u1_cov_fac @npr.rand(m,1)  + u1_mean
            sample_u2 = u2_cov_fac @ npr.rand(m,1) + u2_mean
            sample_h = h_cov_fac*h_cov_fac* npr.rand(n,1) + h_mean

            log_prob=log_prob+logprob(params,sample_u1,X,sample_h,'1')
            log_prob=log_prob+logprob(params,sample_u2,sample_h,Y,'2')
        log_prob=log_prob/num_samples
        #entropy=mvn.entropy(np.reshape(u1_mean,-1), (u1_cov_fac @ u1_cov_fac.T))
        #entropy=entropy-mvn.entropy(np.reshape(u2_mean,-1), (u2_cov_fac @ u2_cov_fac.T))
        #entropy=entropy-mvn.entropy(np.reshape(h_mean,-1), np.diag(h_mean) @ np.diag(h_mean))
        print(log_prob)#+entropy)

        return -(log_prob)#+entropy)
def reward_function(action_chosen, label):
    if action_chosen == 0 and label == 1:
        # we chose to eat a poisonous mushroom with probability 1/2 we get really punished
        if npr.rand() > 0.5:
            reward = -35
        else:
            reward = 0
    elif action_chosen == 0 and label == 0:
        reward = 5
    else:
        # we chose not to eat, so we get no reward
        reward = 0

    if label == 1:
        oracle_reward = 0
    else:
        oracle_reward = 5
    return reward, oracle_reward
Exemplo n.º 12
0
def test_power_arg1_zero():
    fun = lambda y: np.power(0., y)
    d_fun = grad(fun)
    check_grads(fun, npr.rand()**2)
    check_grads(d_fun, npr.rand()**2)
Exemplo n.º 13
0
 def __init__(self, K, D, M=0):
     super(StationaryTransitions, self).__init__(K, D, M=M)
     Ps = .95 * np.eye(K) + .05 * npr.rand(K, K)
     Ps /= Ps.sum(axis=1, keepdims=True)
     self.log_Ps = np.log(Ps)
Exemplo n.º 14
0
def random_diag_nn_potentials(n, T):
    return -1. / 2 * npr.rand(T, n), npr.randn(T, n), npr.randn(T)
Exemplo n.º 15
0
 def sample(self, z, x, input=None, tag=None):
     T = z.shape[0]
     z = np.zeros_like(z, dtype=int) if self.single_subspace else z
     ps = self.mean(self.forward(x, input, tag))
     return (npr.rand(T, self.N) < ps[np.arange(T), z, :]).astype(int)
Exemplo n.º 16
0
    # input is sum of u_r and u_l
    u = 1.0*np.array(u).T
    z, x, y = latent_acc.sample(T, input=u)

    us.append(u)
    zs.append(z)
    xs.append(x)
    ys.append(y)

# initialize test model
test_acc = LatentAccumulation(N, K, D, M=M,
								transitions="race",
								emissions="poisson",
								emission_kwargs={"bin_size":bin_size},
								dynamics_kwargs={"learn_A":False})
betas0 = 0.02+0.08*npr.rand()*np.ones((D,))
sigmas0 = np.log((4e-5+3.5e-3*npr.rand()))*np.ones((D,))
test_acc.dynamics.params = (betas0, sigmas0) # test_acc.dynamics.params[2])

# Initialize C, d
u_sum = np.array([np.sum(u[:,0] - u[:,1]) for u in us])
y_end = np.array([y[-10:] for y in ys])
y_U = y_end[np.where(u_sum>=25)]
y_L = y_end[np.where(u_sum<=-25)]
d_init = (np.mean([y[:5] for y in ys],axis=(0,1)) / bin_size).reshape((1,N))
C_init = np.hstack((np.mean(y_U,axis=(0,1))[:,None],np.mean(y_L,axis=(0,1))[:,None])) / bin_size - d_init.T
test_acc.emissions.ds[0] = d_init
test_acc.emissions.Cs[0] = C_init
init_params = copy.deepcopy(test_acc.params)
test_acc_vlem = copy.deepcopy(test_acc)
Exemplo n.º 17
0
def test_power_arg1():
    x = npr.randn()**2
    fun = lambda y : np.power(x, y)
    d_fun = grad(fun)
    check_grads(fun, npr.rand()**2)
    check_grads(d_fun, npr.rand()**2)
Exemplo n.º 18
0
def initialize_meanfield(label_global, node_potentials):
    T, K = node_potentials.shape[0], label_global.shape[0]
    return normalize(npr.rand(T, K))
Exemplo n.º 19
0
def test_radians():
    fun = lambda x: 3.0 * np.radians(x)
    d_fun = grad(fun)
    check_grads(fun, 10.0 * npr.rand())
    check_grads(d_fun, 10.0 * npr.rand())
Exemplo n.º 20
0
def test_degrees():
    fun = lambda x: 3.0 * np.degrees(x)
    d_fun = grad(fun)
    check_grads(fun, 10.0 * npr.rand())
    check_grads(d_fun, 10.0 * npr.rand())
Exemplo n.º 21
0
def test_reciprocal():
    fun = lambda x: np.reciprocal(x)
    d_fun = grad(fun)
    check_grads(fun, npr.rand())
    check_grads(d_fun, npr.rand())
Exemplo n.º 22
0
def test_negative():
    fun = lambda x: np.negative(x)
    d_fun = grad(fun)
    check_grads(fun, npr.rand())
    check_grads(d_fun, npr.rand())
Exemplo n.º 23
0
def test_true_divide_arg1():
    fun = lambda x, y: np.true_divide(x, y)
    d_fun = grad(fun, 1)
    check_grads(fun, npr.rand(), npr.rand())
    check_grads(d_fun, npr.rand(), npr.rand())
Exemplo n.º 24
0
def test_multiply_arg1():
    fun = lambda x, y: np.multiply(x, y)
    d_fun = grad(fun, 1)
    check_grads(fun, npr.rand(), npr.rand())
    check_grads(d_fun, npr.rand(), npr.rand())
Exemplo n.º 25
0
def test_divide_arg0():
    fun = lambda x, y: np.divide(x, y)
    d_fun = grad(fun)
    check_grads(fun, npr.rand(), npr.rand())
    check_grads(d_fun, npr.rand(), npr.rand())
Exemplo n.º 26
0
def initialize_hmm_parameters(num_states, num_outputs):
    init_pi = normalize(npr.rand(num_states))
    init_A = normalize(npr.rand(num_states, num_states))
    init_B = normalize(npr.rand(num_states, num_outputs))
    return init_pi, init_A, init_B
Exemplo n.º 27
0
def test_sinc():
    fun = lambda x: 3.0 * np.sinc(x)
    d_fun = grad(fun)
    check_grads(fun, 10.0 * npr.rand())
    check_grads(d_fun, 10.0 * npr.rand())
Exemplo n.º 28
0
def initialize_local_meanfield(label_global, node_potentials):
    K = label_global.shape[0]
    T = node_potentials[0].shape[0]
    return normalize(npr.rand(T, K))
Exemplo n.º 29
0
 def make_dir_natparam(num_states):
     return alpha * np.ones(num_states) if not random else alpha + npr.rand(
         num_states)
Exemplo n.º 30
0
def test_mod_arg1():
    fun = lambda x, y: np.mod(x, y)
    d_fun = grad(fun, 1)
    check_grads(fun, npr.rand(), npr.rand())
    check_grads(d_fun, npr.rand(), npr.rand())
Exemplo n.º 31
0
def random_diag_nn_potentials(n, T):
    return -1./2*npr.rand(T, n), npr.randn(T, n), npr.randn(T)
Exemplo n.º 32
0
import autograd.numpy as np
import autograd.numpy.random as npr
from autograd import grad
import sklearn.metrics
import pylab

# Generando los datos
ejemplos = 1000
caracteristicas = 100
D = (npr.randn(ejemplos, caracteristicas), npr.randn(ejemplos))

# Especificando la red
units_capa1 = 10
units_capa2 = 1
w1 =npr.rand(caracteristicas, units_capa1)
b1 = npr.rand(units_capa1)
w2 = npr.rand(units_capa1, units_capa2)
b2 = 0.0
theta = (w1, b1, w2, b2)

# Función de costo
def costo_cuadratico(y, y_barra):
    return np.dot((y - y_barra), (y - y_barra))

# Capa de salida
def entropia_cruzada_binaria(y, y_barra):
    return np.sum(-((y * np.log(y_barra)) + ((1-y) * np.log(1 - y_barra))))

# Armando la red
def red_neuronal(x, theta):
    w1, b1, w2, b2 = theta
Exemplo n.º 33
0
def make_parameters(T, K):
    pi0 = np.ones(K) / K
    Ps = npr.rand(T-1, K, K)
    Ps /= Ps.sum(axis=2, keepdims=True)
    ll = npr.randn(T, K)
    return pi0, Ps, ll
# spliting the data into training and testing data sets
#X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=50,
#                                                    random_state=0)
X_train = X
Y_train = Y

# some stats on data
examples = Y_train.shape[0]
features = X_train.shape[1]
D = (X_train, Y_train)

# Specify the network
layer1_units = 20
layer2_units = 3
w1 = npr.rand(features, layer1_units)
b1 = npr.rand(layer1_units)
w2 = npr.rand(layer1_units, layer2_units)
b2 = npr.rand(layer2_units)
theta = (w1, b1, w2, b2)


# Define the loss function (cross entropy)
def cross_entropy(y, y_hat):
    return np.sum(-y * np.log(y_hat))


def sigmoid(x):
    return 1 / (1 + np.exp(-x))

Exemplo n.º 35
0
def test_divide_arg0():
    fun = lambda x, y : np.divide(x, y)
    d_fun = grad(fun)
    check_grads(fun, npr.rand(), npr.rand())
    check_grads(d_fun, npr.rand(), npr.rand())
Exemplo n.º 36
0
                 emission_kwargs=dict(link="softplus"))

# Set rotational dynamics
for k in range(K):
    true_slds.dynamics.As[k] = .95 * random_rotation(
        D, theta=(k + 1) * np.pi / 20)
    true_slds.dynamics.bs[k] = 3 * npr.randn(D)

# Set an offset to make the counts larger
# true_slds.emissions.ds += 10

# Sample data
z, x, y = true_slds.sample(T)

# Mask off some data
mask = npr.rand(T, N) < 0.95
y_masked = y * mask

# In[4]:

plt.imshow(y.T, aspect="auto", interpolation="none")
plt.xlabel("time")
plt.ylabel("neuron")
plt.colorbar()

# In[5]:

print("Fitting SLDS with SVI")
slds = SLDS(N,
            K,
            D,
Exemplo n.º 37
0
def test_true_divide_arg1():
    fun = lambda x, y : np.true_divide(x, y)
    d_fun = grad(fun, 1)
    check_grads(fun, npr.rand(), npr.rand())
    check_grads(d_fun, npr.rand(), npr.rand())
import autograd.numpy as np
import autograd.numpy.random as npr
from autograd import grad
import sklearn.metrics
import pylab

# Generate Dataset
examples = 1000
features = 100
D = (npr.randn(examples, features), npr.randn(examples))

# Specify the network
layer1_units = 10
layer2_units = 1
w1 = npr.rand(features, layer1_units)
b1 = npr.rand(layer1_units)
w2 = npr.rand(layer1_units, layer2_units)
b2 = 0.0
theta = (w1, b1, w2, b2)

# Define the loss function
def squared_loss(y, y_hat):
    return np.dot((y - y_hat),(y - y_hat))

# Output Layer
def binary_cross_entropy(y, y_hat):
    return np.sum(-((y * np.log(y_hat)) + ((1-y) * np.log(1 - y_hat))))

# Wraper around the Neural Network
def neural_network(x, theta):
    w1, b1, w2, b2 = theta
Exemplo n.º 39
0
def test_negative():
    fun = lambda x : np.negative(x)
    d_fun = grad(fun)
    check_grads(fun, npr.rand())
    check_grads(d_fun, npr.rand())
Exemplo n.º 40
0
plt.tight_layout()

# fit SLDS model to ys
# initialize
test_acc = LatentAccumulation(N,
                              K,
                              D,
                              M=M,
                              transitions="ddmnlncollapsing",
                              dynamics_kwargs={
                                  "learn_V": False,
                                  "learn_A": False
                              },
                              emissions="poisson",
                              emission_kwargs={"bin_size": bin_size})
betas = np.array([0.0 + 0.08 * npr.rand()])
sigmas = np.log(5e-4 + 2.5e-3 * npr.rand()) * np.ones((D, ))
test_acc.dynamics.params = (betas, sigmas) + test_acc.dynamics.params[2:]
test_acc.initialize(ys, inputs=us)
init_params = copy.deepcopy(test_acc.params)

# fit
q_elbos, q_lem = test_acc.fit(ys,
                              inputs=us,
                              method="laplace_em",
                              variational_posterior="structured_meanfield",
                              num_iters=50,
                              alpha=0.5,
                              initialize=False)

plt.ion()
Exemplo n.º 41
0
def test_degrees():
    fun = lambda x : 3.0 * np.degrees(x)
    d_fun = grad(fun)
    check_grads(fun, 10.0*npr.rand())
    check_grads(d_fun, 10.0*npr.rand())
Exemplo n.º 42
0
def WMR(dt=0.001,
        theta=float('nan'),
        delay_time=[],
        delay_max=2,
        delay_min=1,
        showplots=0,
        prior='uniform',
        algorithm=[]):
    '''
    Generates time series for the Working Memory Ring task. Network must remember a stimulus that lies on a ring, and 
    reproduce it at a specified time.
        Inputs:
            dt:         Time step (default 0.001)
            theta:      Angle of stimulus. Should be between -pi and pi. Randomly generated if not specified
            delay_time: How long to hold the interval in memory. If not specified, randomly generated.
            delay_max:  Used to randomly generate a delay
            delay_min:  Same.
            showplots:  If 1, creates a plot showing target, inputs, and hints
            prior:      Specifies type of distribution from which theta is drawn.
                        'uniform': Default, uniform from -pi to pi
                        'four':    Mixture of 4 Gaussians between -pi and pi, periodic BCs
                        'six':     Same as above, but with 6 slightly narrower Gaussians
            algorithm:  Specify which you need inputs for, as the time series might very
                        'grad'
                        'full-FORCE'

        Outputs:
            inp:        For input into network. Will have two columns (rhythm and trigger)
            targ:       Target output. Four columns (one for each tap)
            hints:      Hints for full-FORCE training. Three columns (one for each interval)
            theta:      Stimulus angle
            targ_idx:   Indices where target is specified
            response_idx:   Index where response should be recorded
            trigger_idx:    Start of response trigger
            stim_idx:       Where the stimulus begins
            delay_idx:      Where the delay begins
    '''
    def TTS(T, dt):
        # Convert Time to Steps
        return int(round(T / dt))

    # Check that the algorithm is valid
    if algorithm != 'full-FORCE' and algorithm != 'grad':
        raise ValueError(
            'Please choose a valid training algorithm setting. See documentation for details'
        )

    # If theta isn't specified, choose it from some distribution
    if np.isnan(theta):
        if prior == 'uniform':
            theta = np.pi * (np.random.rand() * 2 - 1)

        # Biased:
        elif prior == 'four':
            q = np.random.choice(np.arange(0, 1, 1 / 4))
            theta = (np.pi * (2 * np.mod(np.random.normal(q, 0.06), 1) - 1))

        elif prior == 'six':
            q = np.random.choice(np.arange(0, 1, 1 / 6))
            theta = (np.pi * (2 * np.mod(np.random.normal(q, 0.04), 1) - 1))

    # Pick a delay time, if it's not specified
    if not delay_time:
        delay_time = npr.rand() * (delay_max - delay_min) + delay_min

    x = np.cos(theta)
    y = np.sin(theta)

    fix_time = 0.3
    sample_time = 0.2
    trigger_time = 0.1
    reaction_time = 0.2
    response_time = 0.2
    if algorithm == 'full-FORCE':
        iti_time = 0.3
    else:
        iti_time = 0

    fix_steps = TTS(fix_time, dt)
    sample_steps = TTS(sample_time, dt)
    delay_steps = TTS(delay_time, dt)
    trigger_steps = TTS(trigger_time, dt)
    reaction_steps = TTS(reaction_time, dt)
    response_steps = TTS(response_time, dt)
    iti_steps = TTS(iti_time, dt)
    total_steps = (fix_steps + sample_steps + delay_steps + trigger_steps +
                   reaction_steps + response_steps + iti_steps)

    show_stim = fix_steps
    show_trigger = show_stim + sample_steps + delay_steps
    show_response = show_trigger + trigger_steps + reaction_steps

    x_input = np.zeros((total_steps, 1))
    y_input = np.zeros((total_steps, 1))
    trigger = np.zeros((total_steps, 1))

    x_targ = np.zeros((total_steps, 1))
    y_targ = np.zeros((total_steps, 1))
    x_hint = np.zeros((total_steps, 1))
    y_hint = np.zeros((total_steps, 1))

    x_input[show_stim:show_stim + sample_steps, 0] = x
    y_input[show_stim:show_stim + sample_steps, 0] = y
    trigger[show_trigger:show_trigger + trigger_steps, 0] = 1

    x_targ[show_trigger + trigger_steps:show_response,
           0] = np.linspace(0, x, reaction_steps)
    x_targ[show_response:show_response + response_steps,
           0] = np.linspace(x, 0, response_steps)
    y_targ[show_trigger + trigger_steps:show_response,
           0] = np.linspace(0, y, reaction_steps)
    y_targ[show_response:show_response + response_steps,
           0] = np.linspace(y, 0, response_steps)

    x_hint[show_stim:show_trigger, 0] = x / 2
    y_hint[show_stim:show_trigger, 0] = y / 2

    inputs = np.hstack((x_input, y_input, trigger))
    targets = np.hstack((x_targ, y_targ))
    hints = np.hstack((x_hint, y_hint))

    targ_idx = np.arange(show_trigger + trigger_steps,
                         show_response + response_steps)

    if showplots:
        plt.figure()
        plt.plot(inputs, 'b')
        plt.plot(targets, 'r--')
        plt.plot(hints, 'g--')
        plt.plot()
        plt.show()

    inps_and_targs = {
        'inps': inputs,
        'targs': targets,
        'hints': hints,
        'targ_idx': targ_idx,
        'theta': theta,
        'response_idx': show_response,
        'trigger_idx': show_trigger,
        'stim_idx': show_stim,
        'delay_idx': show_stim + sample_steps
    }
    return inps_and_targs
Exemplo n.º 43
0
def test_power_arg0():
    y = npr.randn()**2 + 1.0
    fun = lambda x: np.power(x, y)
    d_fun = grad(fun)
    check_grads(fun, npr.rand()**2)
    check_grads(d_fun, npr.rand()**2)
Exemplo n.º 44
0
 def make_label_global_natparam(k, random):
     return alpha * np.ones(k) if not random else alpha + npr.rand(k)
Exemplo n.º 45
0
 def sample_y(self, z, x, input=None, tag=None):
     T = z.shape[0]
     z = np.zeros_like(z, dtype=int) if self.single_subspace else z
     ps = self.mean(self.compute_mus(x))
     return npr.rand(T, self.N) < ps[np.arange(T), z,:]
Exemplo n.º 46
0
def test_power_arg0():
    y = npr.randn()**2 + 1.0
    fun = lambda x : np.power(x, y)
    d_fun = grad(fun)
    check_grads(fun, npr.rand()**2)
    check_grads(d_fun, npr.rand()**2)
Exemplo n.º 47
0
def initialize_hmm_parameters(num_states, num_outputs):
    init_pi = normalize(npr.rand(num_states))
    init_A = normalize(npr.rand(num_states, num_states))
    init_B = normalize(npr.rand(num_states, num_outputs))
    return init_pi, init_A, init_B
Exemplo n.º 48
0
def test_mod_arg1():
    fun = lambda x, y : np.mod(x, y)
    d_fun = grad(fun, 1)
    check_grads(fun, npr.rand(), npr.rand())
    check_grads(d_fun, npr.rand(), npr.rand())
Exemplo n.º 49
0
def test_power_arg1():
    x = npr.randn()**2
    fun = lambda y: np.power(x, y)
    d_fun = grad(fun)
    check_grads(fun, npr.rand()**2)
    check_grads(d_fun, npr.rand()**2)
Exemplo n.º 50
0
def test_multiply_arg1():
    fun = lambda x, y : np.multiply(x, y)
    d_fun = grad(fun, 1)
    check_grads(fun, npr.rand(), npr.rand())
    check_grads(d_fun, npr.rand(), npr.rand())
Exemplo n.º 51
0
def test_grad_fanout():
    fun = lambda x : np.sin(np.sin(x) + np.sin(x))
    df = grad(fun)
    check_grads(fun, npr.randn())
    check_grads(df, npr.rand())
Exemplo n.º 52
0
def test_reciprocal():
    fun = lambda x : np.reciprocal(x)
    d_fun = grad(fun)
    check_grads(fun, npr.rand())
    check_grads(d_fun, npr.rand())
Exemplo n.º 53
0
# Importando los datos
with open('Bias_correction_ucl.csv', mode='r', encoding='utf8') as DS:
    lector = csv.reader(DS, delimiter=',')
    DataSet = []
    for datos in lector:
        DataSet.append(datos)
DataSet = DataSet[1:]
DataFrameY = np.array([dato[22] for dato in DataSet])
DataFrameX = np.array([dato[:21] for dato in DataSet])
DataSet = (DataFrameX, DataFrameY)

# Parámetros de la red
units_capa1 = 22
units_capa2 = 1
w1 = npr.rand(len(DataSet[0]), units_capa1)
b1 = npr.rand(units_capa1)
w2 = npr.rand(units_capa1, units_capa2)
b2 = 0.0
theta = (w1, b1, w2, b2)


# Función de costo
def costo_cuadratico(y, y_barra):
    return np.dot((y - y_barra), (y - y_barra))


# Armando la red
def red_neuronal(x, theta):
    w1, b1, w2, b2 = theta
    return np.tanh(np.dot((np.tanh(np.dot(x, w1) + b1)), w2) + b2)
Exemplo n.º 54
0
def test_radians():
    fun = lambda x : 3.0 * np.radians(x)
    d_fun = grad(fun)
    check_grads(fun, 10.0*npr.rand())
    check_grads(d_fun, 10.0*npr.rand())
Exemplo n.º 55
0
 def sample_x(self, z, xhist, input=None, tag=None, with_noise=True):
     ps = 1 / (1 + np.exp(self.logit_ps))
     return npr.rand(self.D) < ps[z]
Exemplo n.º 56
0
def test_sinc():
    fun = lambda x : 3.0 * np.sinc(x)
    d_fun = grad(fun)
    check_grads(fun, 10.0*npr.rand())
    check_grads(d_fun, 10.0*npr.rand())
Exemplo n.º 57
0
def gen_redshift_samples_tempering(Nchains, Nsamps, INIT_REDSHIFT,
                                   lnpdf, dlnpdf, USE_MLE):
    """ Generate posterior samples of red-shift using HMC + Parallel Tempering """

    print "=== PARALLEL TEMPERING WITH %d CHAINS === "%Nchains

    # grab basis for dimensions
    B = get_basis_sample(0, USE_MLE)

    # set up tempering parameters
    z_inits = np.linspace(.5, 3.0, Nchains)
    temps   = np.linspace(.2, 1., Nchains)

    # set up a list of Nchains markov chains
    chains_samps = [np.zeros((Nsamps, B.shape[0] + 2)) for c in range(Nchains)]
    chains_lls   = [np.zeros(Nsamps) for c in range(Nchains)]
    for ci, chs in enumerate(chains_samps): 
        chs[0, :]  = .001 * npr.randn(B.shape[0] + 2)
        chs[0, 0]  = z_inits[ci]
        chs[0, -1] = np.log(INIT_MAG)
        chains_lls[ci][0] = temps[ci] * lnpdf(chs[0, :], B)

    ## sanity check gradient
    ru.check_grad(fun = lambda(x): temps[1] * lnpdf(x, B),
               jac = lambda(x): temps[1] * dlnpdf(x, B),
               th  = chains_samps[1][0,:])

    ## sample
    Naccepts   = np.zeros(Nchains)
    Nswaps     = 0
    step_sizes = .005 * np.ones(Nchains)
    avg_rates  = .9 * np.ones(Nchains)
    adapt_step = True
    print "{0:10}|{1:10}|{2:10}|{3:10}|{4:15}|{5:15}".format(
        " iter ",
        " ll ",
        " step_sz ",
        " Nswaps ",
        " Naccepts",
        " z (z_spec)")
    for s in np.arange(1, Nsamps):
        # stop adapting after warmup
        if s > Nsamps/2:
            adapt_step = False

        # Nchains HMC draws
        for ci in range(Nchains):
            B = get_basis_sample(s, USE_MLE)
            chains_samps[ci][s, :], P, step_sizes[ci], avg_rates[ci] = hmc(
                     x_curr           = chains_samps[ci][s-1,:],
                     llhfunc           = lambda(x): temps[ci] * lnpdf(x, B),
                     grad_llhfunc      = lambda(x): temps[ci] * dlnpdf(x, B),
                     eps               = step_sizes[ci],
                     num_steps         = STEPS_PER_SAMPLE,
                     mass              = 1.,
                     adaptive_step_sz  = adapt_step,
                     min_step_sz       = 0.00005,
                     avg_accept_rate   = avg_rates[ci], 
                     tgt_accept_rate   = .85)
            chains_lls[ci][s] = temps[ci] * lnpdf(chains_samps[ci][s, :], B)
            if chains_lls[ci][s] != chains_lls[ci][s-1]:
                Naccepts[ci] += 1

        # propose swaps cascading down from first 
        for ci in range(Nchains-1):
            # cache raw ll's for each (already computed)
            ll_ci = chains_lls[ci][s] / temps[ci]
            ll_ci_plus = chains_lls[ci+1][s] / temps[ci + 1]

            # propose swap between chain index ci and ci + 1
            ll_prop = ll_ci_plus * temps[ci] + ll_ci * temps[ci+1]
            ll_curr = chains_lls[ci][s] + chains_lls[ci+1][s]
            if np.log(npr.rand()) < ll_prop - ll_curr:
                ci_samp                  = chains_samps[ci][s, :].copy()

                # move chain sample ci+1 into ci
                chains_samps[ci][s, :]   = chains_samps[ci+1][s, :]
                chains_lls[ci][s]        = ll_ci_plus * temps[ci]

                # move chain sample ci into ci + 1
                chains_samps[ci+1][s, :] = ci_samp
                chains_lls[ci+1][s]      = ll_ci * temps[ci+1]
                if ci+1 == Nchains - 1:
                    Nswaps += 1

        if s % 20 == 0:
            print "{0:10}|{1:10}|{2:10}|{3:10}|{4:15}|{5:15}".format(
                "%d/%d"%(s, Nsamps),
                " %2.4f"%chains_lls[-1][s],
                " %2.5f"%step_sizes[-1],
                " %d (%2.2f)"%(Nswaps, avg_rates[-1]), 
                " (%d) (%d) (%d)"%(Naccepts[0], Naccepts[-2], Naccepts[-1]),
                " (hot: %2.2f), (cold: %2.2f), (pi: %2.2f) (true: %2.2f)"%(
                    chains_samps[0][s, 0], chains_samps[-2][s, 0], 
                    chains_samps[-1][s, 0], z_n))
        if s % 200:
            save_redshift_samples(chains_samps[-1], chains_lls[-1], q_idx=n, 
                                  chain_idx="temper", use_mle=USE_MLE,
                                  K=B.shape[0], V=B.shape[1], qso_info = qso_n_info)
    ### save samples 
    save_redshift_samples(chains_samps[-1], chains_lls[-1], q_idx=n, 
                          chain_idx="temper", use_mle=USE_MLE,
                          K=B.shape[0], V=B.shape[1], qso_info = qso_n_info)
    #only return the chain we care about
    return chains_samps[-1], chains_lls[-1]