Exemplo n.º 1
0
def _wrapped_unary_to_nary(func):
    """Use functools.wraps with unary_to_nary decorator."""
    if AUTOGRAD_AVAILABLE:
        return wraps(func)(unary_to_nary(func))
    else:
        return func
Exemplo n.º 2
0
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module contains the autograd wrappers :class:`grad` and :func:`jacobian`
"""
import numpy as onp

from pennylane import numpy as np
from functools import partial

from autograd.core import make_vjp as _make_vjp
from autograd.wrap_util import unary_to_nary
from autograd.extend import vspace
from autograd import jacobian as _jacobian

make_vjp = unary_to_nary(_make_vjp)


class grad:
    """Returns the gradient as a callable function of (functions of) QNodes.

    Function arguments with the property ``requires_grad`` set to ``False``
    will automatically be excluded from the gradient computation, unless
    the ``argnum`` keyword argument is passed.

    When the output gradient function is executed, both the forward pass
    *and* the backward pass will be performed in order to
    compute the gradient. The value of the forward pass is available via the
    :attr:`~.forward` property.

    Args:
Exemplo n.º 3
0
def _wrapped_unary_to_nary(func):
    """Use functools.wraps with unary_to_nary decorator."""
    return wraps(func)(unary_to_nary(func))