Exemplo n.º 1
0
    def fit(self,
            n_output_node,
            input_shape,
            train_data,
            test_data,
            time_limit=24 * 60 * 60):
        """ Search the best CnnModule.

        Args:
            n_output_node: A integer value represent the number of output node in the final layer.
            input_shape: A tuple to express the shape of every train entry. For example,
                MNIST dataset would be (28,28,1)
            train_data: A PyTorch DataLoader instance represents the training data
            test_data: A PyTorch DataLoader instance represents the testing data
            time_limit: A integer value represents the time limit on searching for models.
        """
        # Create the searcher and save on disk
        if not self.searcher:
            input_shape = input_shape[1:]
            self.searcher_args['n_output_node'] = n_output_node
            self.searcher_args['input_shape'] = input_shape
            self.searcher_args['path'] = self.path
            self.searcher_args['metric'] = self.metric
            self.searcher_args['loss'] = self.loss
            self.searcher_args['verbose'] = self.verbose
            searcher = Searcher(**self.searcher_args)
            self._save_searcher(searcher)
            self.searcher = True

        start_time = time.time()
        time_remain = time_limit
        try:
            while time_remain > 0:
                searcher = pickle_from_file(os.path.join(
                    self.path, 'searcher'))
                searcher.search(train_data, test_data, int(time_remain))
                if len(self._load_searcher().history
                       ) >= Constant.MAX_MODEL_NUM:
                    break
                time_elapsed = time.time() - start_time
                time_remain = time_limit - time_elapsed
            # if no search executed during the time_limit, then raise an error
            if time_remain <= 0:
                raise TimeoutError
        except TimeoutError:
            if len(self._load_searcher().history) == 0:
                raise TimeoutError(
                    "Search Time too short. No model was found during the search time."
                )
            elif self.verbose:
                print('Time is out.')
Exemplo n.º 2
0
class NetworkModule:
    """ Class to create a network module.

    Attributes:
        loss: A function taking two parameters, the predictions and the ground truth.
        metric: An instance of the Metric subclasses.
        searcher_args: A dictionary containing the parameters for the searcher's __init__ function.
        searcher: An instance of the Searcher class.
        path: A string. The path to the directory to save the searcher.
        verbose: A boolean. Setting it to true prints to stdout.
        generators: A list of instances of the NetworkGenerator class or its subclasses.
    """
    def __init__(self, loss, metric, searcher_args, path, verbose=False):
        self.searcher_args = searcher_args
        self.searcher = None
        self.path = path
        self.verbose = verbose
        self.loss = loss
        self.metric = metric
        self.generators = []

    def fit(self,
            n_output_node,
            input_shape,
            train_data,
            test_data,
            time_limit=24 * 60 * 60):
        """ Search the best network.

        Args:
            n_output_node: A integer value represent the number of output node in the final layer.
            input_shape: A tuple to express the shape of every train entry. For example,
                MNIST dataset would be (28,28,1).
            train_data: A PyTorch DataLoader instance representing the training data.
            test_data: A PyTorch DataLoader instance representing the testing data.
            time_limit: A integer value represents the time limit on searching for models.
        """
        # Create the searcher and save on disk
        if not self.searcher:
            input_shape = input_shape[1:]
            self.searcher_args['n_output_node'] = n_output_node
            self.searcher_args['input_shape'] = input_shape
            self.searcher_args['path'] = self.path
            self.searcher_args['metric'] = self.metric
            self.searcher_args['loss'] = self.loss
            self.searcher_args['generators'] = self.generators
            self.searcher_args['verbose'] = self.verbose
            self.searcher = Searcher(**self.searcher_args)
            pickle_to_file(self, os.path.join(self.path, 'module'))

        start_time = time.time()
        time_remain = time_limit
        try:
            while time_remain > 0:
                self.searcher.search(train_data, test_data, int(time_remain))
                pickle_to_file(self, os.path.join(self.path, 'module'))
                if len(self.searcher.history) >= Constant.MAX_MODEL_NUM:
                    break
                time_elapsed = time.time() - start_time
                time_remain = time_limit - time_elapsed
            # if no search executed during the time_limit, then raise an error
            if time_remain <= 0:
                raise TimeoutError
        except TimeoutError:
            if len(self.searcher.history) == 0:
                raise TimeoutError(
                    "Search Time too short. No model was found during the search time."
                )
            elif self.verbose:
                print('Time is out.')

    def final_fit(self,
                  train_data,
                  test_data,
                  trainer_args=None,
                  retrain=False):
        """Final training after found the best architecture.

        Args:
            trainer_args: A dictionary containing the parameters of the ModelTrainer constructor.
            retrain: A boolean of whether reinitialize the weights of the model.
            train_data: A DataLoader instance representing the training data.
            test_data: A DataLoader instance representing the testing data.
        """
        graph = self.searcher.load_best_model()

        if retrain:
            graph.weighted = False
        _, _1, graph = train(None, graph, train_data, test_data, trainer_args,
                             self.metric, self.loss, self.verbose, self.path)
        self.searcher.replace_model(graph, self.searcher.get_best_model_id())
        pickle_to_file(self, os.path.join(self.path, 'module'))

    @property
    def best_model(self):
        return self.searcher.load_best_model()