Exemplo n.º 1
0
def run(rule_number):
    automaton = automatatron.Engine(rule_number)

    def stream_handler(row, _):
        print automatatron.default_string_formatter(row)
        time.sleep(0.05)

    automaton.run(handler=stream_handler, width=101)
Exemplo n.º 2
0
def create_swarm_input(rule_number):
  this_dir = os.path.dirname(os.path.realpath(__file__))
  data_dir = os.path.join(this_dir, DATA_DIR)
  swarm_input_file = os.path.join(data_dir, SWARM_INPUT_FILENAME % rule_number)
  
  swarm_desc_file = os.path.join(data_dir, SWARM_DESC_FILENAME)
  with open(swarm_desc_file, "r") as swarm_desc_tmpl:
    swarm_desc = swarm_desc_tmpl.read()
    incl_fields = []
    midpoint = BITS / 2
    for i in xrange(BITS):
      incl_fields.append(dict(
        fieldName="bit_%i" % i,
        fieldType="string"
      ))
    swarm_desc = swarm_desc.replace("<INCLUDED_FIELDS>", str(incl_fields))
    swarm_desc = swarm_desc.replace("<PREDICTED_FIELD>", "bit_%i" % midpoint)
    swarm_desc = swarm_desc.replace("<RULE_NUMBER>", str(rule_number))
    swarm_desc = swarm_desc.replace("<SOURCE_FILE>", swarm_input_file)
    swarm_desc_out = os.path.join(data_dir, "swarm_description_%s.py" % rule_number)
    print "Creating swarm description at %s..." % swarm_desc_out
    with open(swarm_desc_out, "w") as swarm_desc_out:
      swarm_desc_out.write(swarm_desc)
  
  print "Creating swarm input file at %s..." % swarm_input_file
  with open(swarm_input_file, "w") as input_file:
    writer = csv.writer(input_file)
    names = []
    types = []
    flags = []
    for i in xrange(BITS):
      names.append("bit_%i" % i)
      types.append("string")
      flags.append("")
    writer.writerow(names)
    writer.writerow(types)
    writer.writerow(flags)
  
    automaton = automatatron.Engine(int(rule_number))
    def stream_handler(row, _):
      writer.writerow(row)
  
    automaton.run(iterations=BITS)
  
    automaton.run(handler=stream_handler, width=BITS, iterations=3000)
Exemplo n.º 3
0
    def test_rule30_prediction_is_perfect_after_600_iterations(self):
        """
    Generates Rule 30 elementary cellular automaton and passes it through NuPIC.
    Asserts that predictions are perfect after X rows of data.
    """
        iterations = 600
        model = ModelFactory.create(rule_30_model_params.MODEL_PARAMS)
        model.enableInference({"predictedField": PREDICTED_FIELD})
        prediction_history = deque(maxlen=500)
        counter = [0]
        last_prediction = [None]

        def stream_handler(row, _):
            counter[0] += 1
            input_row = {}
            for index, field in enumerate(row):
                input_row["bit_%i" % index] = str(field)

            prediction = last_prediction[0]
            predicted_index = int(PREDICTED_FIELD.split("_").pop())
            value = str(row[predicted_index])
            correct = (value == prediction)
            count = counter[0]

            if correct:
                prediction_history.append(1.0)
            else:
                prediction_history.append(0.0)

            correctness = reduce(lambda x, y: x + y,
                                 prediction_history) / len(prediction_history)

            if count == iterations:
                unittest.TestCase.assertEqual(
                    self, 1.0, correctness,
                    "Predictions should be 100 percent correct after reaching %i "
                    "iterations." % iterations)

            result = model.run(input_row)

            prediction = result.inferences["multiStepBestPredictions"][1]
            last_prediction[0] = prediction

        automaton = automatatron.Engine(RULE_NUMBER)
        automaton.run(handler=stream_handler, width=21, iterations=iterations)
Exemplo n.º 4
0
def run_io_through_nupic(model, rule_number):
    prediction_history = deque(maxlen=500)
    counter = [0]
    last_prediction = [None]

    def stream_handler(row, _):
        counter[0] += 1
        input_row = {}
        for index, field in enumerate(row):
            input_row["bit_%i" % index] = str(field)

        # Show this input row compared with the last prediction
        print_current_row_with_last_prediction(
            row, last_prediction[0], int(PREDICTED_FIELD.split("_").pop()),
            prediction_history)
        result = model.run(input_row)

        prediction = result.inferences["multiStepBestPredictions"][1]
        last_prediction[0] = prediction

    automaton = automatatron.Engine(rule_number)
    automaton.run(iterations=21)
    automaton.run(handler=stream_handler, width=21)
Exemplo n.º 5
0
    incl_fields = []
    midpoint = BITS / 2
    for i in xrange(BITS):
        incl_fields.append(dict(fieldName="bit_%i" % i, fieldType="string"))
    swarm_desc = swarm_desc.replace("<INCLUDED_FIELDS>", str(incl_fields))
    swarm_desc = swarm_desc.replace("<PREDICTED_FIELD>", "bit_%i" % midpoint)
    with open("swarm_description.py", "w") as swarm_desc_out:
        swarm_desc_out.write(swarm_desc)

with open("swarm_input.csv", "w") as input_file:
    writer = csv.writer(input_file)
    names = []
    types = []
    flags = []
    for i in xrange(BITS):
        names.append("bit_%i" % i)
        types.append("string")
        flags.append("")
    writer.writerow(names)
    writer.writerow(types)
    writer.writerow(flags)

    automaton = automatatron.Engine(30)

    def stream_handler(row, _):
        writer.writerow(row)

    automaton.run(iterations=BITS)

    automaton.run(handler=stream_handler, width=BITS, iterations=3000)
Exemplo n.º 6
0
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.

import automatatron
import time

print "EXAMPLE 1:"
print "Print the first 10 rows of all possible automaton:"
for rule in range(1, 257):
    automaton = automatatron.Engine(rule)
    automaton.run(iterations=10)
    print automaton

print "EXAMPLE 2:"
print "Print the first 50 rows of Rule 30"
automaton = automatatron.Engine(30)
automaton.run(iterations=50)
print automaton

print "EXAMPLE 3:"
print "Run the next 10 iterations, and pass results into specified handler."


def row_handler(row, _):
    print row