def binary_model_train_test(): cfg = config_parser.CfgParser(os.path.join(CFG_FILE_PATH, 'binary_config.ini')) metric_list, model_label_list = cfg.parse_metrics_models() meta_model_label = cfg.parse_meta_models() automl = automl_base.AutoML(model_save_path=os.path.join(MODEL_FILE_PATH, 'titanic_models/')) X_train, X_val, Y_train, Y_val, X_test = binary_model_data_prepare() model = automl.train(X_train, Y_train, metric_list, model_label_list, meta_model_label[0], 'titanic_model.pkl', K=3)
def binary_model_predict_test(): cfg = config_parser.CfgParser(os.path.join(CFG_FILE_PATH, 'binary_config.ini')) metric_list, model_label_list = cfg.parse_metrics_models() automl = automl_base.AutoML(model_save_path=os.path.join(MODEL_FILE_PATH, 'titanic_models/')) model = automl.load_model(os.path.join(MODEL_FILE_PATH, 'titanic_models/titanic_model.pkl')) X_train, X_val, Y_train, Y_val, X_test = binary_model_data_prepare() val_y = automl.validate(model, X_val, Y_val, metric_list) pred_y = automl.predict(model, X_test)
def multi_model_predict_test(): iris = datasets.load_iris() X_train, X_test, Y_train, Y_test = train_test_split(iris.data[:, 1:3], iris.target, test_size=0.3, random_state=42) automl = automl_base.AutoML(model_save_path=os.path.join(MODEL_FILE_PATH, 'iris_models/')) cfg = config_parser.CfgParser(os.path.join(CFG_FILE_PATH, 'multi_config.ini')) metric_list = cfg.parse_metrics() model = automl.load_model(os.path.join(MODEL_FILE_PATH, 'iris_models/iris_model.pkl')) val_y = automl.validate(model, X_test, Y_test, metric_list) pred_y = automl.predict(model, X_test)
def multi_model_train_test(): iris = datasets.load_iris() X_train, X_test, Y_train, Y_test = train_test_split(iris.data[:, 1:3], iris.target, test_size=0.3, random_state=42) cfg = config_parser.CfgParser(os.path.join(CFG_FILE_PATH, 'multi_config.ini')) metric_list, model_label_list = cfg.parse_metrics_models() meta_model_label = cfg.parse_meta_models() automl = automl_base.AutoML(model_save_path=os.path.join(MODEL_FILE_PATH, 'iris_models/')) model = automl.train(X_train, Y_train, metric_list, model_label_list, meta_model_label[0], model_save_name='iris_model.pkl', K=3)
metric_list, model_label_list = cfg.parse_metrics_models() meta_model_label = cfg.parse_meta_models() print(metric_list) print(model_label_list) print(meta_model_label) test_df = test_df_raw.copy() tx = preprocess_data(test_df) tx = pd.DataFrame(sc.fit_transform(tx.values), index=tx.index, columns=tx.columns) print(tx) model_h = model_helper.ModelHelper() automl = automl_base.AutoML(model_h) model = automl.train(X_train, Y_train, metric_list, model_label_list, meta_model_label[0], K=3) pred_y = automl.predict(model, tx) print(pred_y) submission = pd.DataFrame({ "PassengerId": test_df["PassengerId"], "Survived": pred_y }) submission.to_csv('../data/submission_new.csv', index=False)