Exemplo n.º 1
0
def determine_sg(data_info, dset, options=None):
    options = options or {}
    os.chdir(data_info['working_directory'])
    _logger.info("Automaticaly Determining Symmetry ...")
    if not misc.file_requirements('INTEGRATE.HKL'):
        return {
            'step': 'symmetry',
            'success': False,
            'reason': 'Required files from integration missing'
        }

    try:
        programs.pointless(chiral=options.get('chiral', True))
        sg_info = pointless.parse_pointless()
    except (autoprocess.errors.ProcessError, autoprocess.errors.ParserError,
            IOError) as e:
        return {'step': 'symmetry', 'success': False, 'reason': str(e)}

    xds_params = get_symmetry_params(sg_info['sg_number'], dset)
    sg_info.update(xds_params)
    _logger.info('Selected {}: {} , #{:d} '.format(
        sg_info['type'],
        xtal.SG_SYMBOLS[sg_info['sg_number']],
        sg_info['sg_number'],
    ))

    return {'step': 'symmetry', 'success': True, 'data': sg_info}
Exemplo n.º 2
0
def harvest_correct():
    if not misc.file_requirements('CORRECT.LP', 'GXPARM.XDS', 'XDS_ASCII.HKL'):
        return {
            'step': 'integration',
            'success': False,
            'reason': 'Required files missing'
        }
    else:
        info = xds.parse_integrate()
        programs.xdsstat('XDS_ASCII.HKL')
        stat_info = xds.parse_xdsstat()
        info.update(stat_info)

    if info.get('failure') is None:
        info['output_file'] = 'XDS_ASCII.HKL'
        if len(info.get('statistics',
                        [])) > 1 and info.get('summary') is not None:
            info['summary']['resolution'] = xtal.select_resolution(
                info['statistics'])

        return {'step': 'correction', 'success': True, 'data': info}
    else:
        return {
            'step': 'correction',
            'success': False,
            'reason': info['failure']
        }
Exemplo n.º 3
0
def harvest_spots():
    if misc.file_requirements('SPOT.XDS'):
        return {'step': 'spot_search', 'success': True}
    else:
        return {
            'step': 'spot_search',
            'success': False,
            'reason': 'Could not find spots.'
        }
Exemplo n.º 4
0
def data_quality(dset, options=None):
    filename = dset.results['scaling']['output_file']
    options = options or {}
    os.chdir(options.get('directory', '.'))

    law_type = {'PM': 'Pseudo-merohedral', 'M': 'Merohedral'}
    # Check Requirements
    if not misc.file_requirements(filename):
        return {
            'step': 'data_quality',
            'success': False,
            'reason': 'Required files missing'
        }

    try:
        programs.xtriage(filename,
                         label=f'Checking quality of dataset "{dset.name}"')
        info = phenix.parse_xtriage()
    except autoprocess.errors.ProcessError as e:
        return {'step': 'data_quality', 'success': False, 'reason': str(e)}

    statistics_deviate = False
    if info.get('twinning_l_zscore', 0) > 3.5:
        statistics_deviate = True
        logger.warning(
            'Intensity statistics deviate significantly from expected.')

    if len(info.get('twin_laws', [])) > 0:
        if statistics_deviate:
            logger.warning(
                'Possible twin laws which may explain the deviation:')
        else:
            logger.info('Possible twin laws:')
        max_fraction = 0.0
        for law in info['twin_laws']:
            fraction = 100.0 * max(
                [law['britton_alpha'], law['ML_alpha'], law['H_alpha']])
            txt = ".. {} operator: [{}], Max twin-fraction: {:0.1f}%".format(
                law_type[law['type'].strip()],
                law['operator'].strip(),
                fraction,
            )
            max_fraction = max(max_fraction, fraction)
            if statistics_deviate:
                logger.warning(txt)
            else:
                logger.info(txt)
        if not statistics_deviate and max_fraction > 10.0:
            logger.warning(
                'Despite reasonable intensity statistics, high twin-fraction suggests wrong symmetry.'
            )
    if statistics_deviate and len(info.get('twin_laws', [])) == 0:
        logger.warning(
            'No pseudo/merohedral twin laws possible in this lattice.')

    return {'step': 'data_quality', 'success': True, 'data': info}
Exemplo n.º 5
0
def harvest_initialize():
    if misc.file_requirements('X-CORRECTIONS.cbf', 'Y-CORRECTIONS.cbf',
                              'BKGINIT.cbf', 'BLANK.cbf', 'GAIN.cbf'):
        return {'step': 'initialize', 'success': True}
    else:
        return {
            'step': 'initialize',
            'success': False,
            'reason': 'Initialization unsuccessful!'
        }
Exemplo n.º 6
0
def calc_strategy(data_info, options=None):
    options = options or {}
    os.chdir(data_info['working_directory'])

    # indicate overwritten parameters
    suffix = []
    if options.get('resolution'):
        suffix.append("res=%0.2f" % options.get('resolution'))
    if options.get('anomalous'):
        suffix.append("anomalous")

    if len(suffix) > 0:
        step_descr = "Calculating strategy [{}]".format(", ".join(suffix))
    else:
        step_descr = 'Calculating strategy'

    if not misc.file_requirements('CORRECT.LP', 'BKGPIX.cbf', 'XDS_ASCII.HKL',
                                  'GXPARM.XDS'):
        return {
            'step': 'strategy',
            'success': False,
            'reason': 'Required files from integration missing'
        }

    if os.path.exists('GXPARM.XDS'):
        misc.backup_files('XPARM.XDS')
        shutil.copy('GXPARM.XDS', 'XPARM.XDS')
    run_info = {
        'mode': options.get('mode'),
        'anomalous': options.get('anomalous', False)
    }
    run_info.update(data_info)
    xdsio.write_xds_input("XPLAN", run_info)

    try:
        programs.xds_par(step_descr)
        info = xds.parse_xplan()

        programs.best(data_info, options)
        info.update(best.parse_best())
    except autoprocess.errors.ProcessError as e:
        return {
            'step': 'strategy',
            'success': True,
            'reason': str(e),
            'data': info
        }

    return {'step': 'strategy', 'success': True, 'data': info}
Exemplo n.º 7
0
def analyse_image(data_info, options=None):
    options = options or {}
    os.chdir(data_info['working_directory'])
    _logger.info('Analyzing reference image ...')

    try:
        programs.distl(data_info['reference_image'])
    except autoprocess.errors.ProcessError as e:
        return {'step': 'image_analysis', 'success': False, 'reason': str(e)}

    if not misc.file_requirements('distl.log'):
        return {
            'step': 'image_analysis',
            'success': False,
            'reason': 'Could not analyse reference image'
        }
    info = distl.parse_distl('distl.log')
    return {'step': 'image_analysis', 'success': True, 'data': info}
Exemplo n.º 8
0
def harvest_integrate():
    if not misc.file_requirements('INTEGRATE.LP', 'CORRECT.LP'):
        return {
            'step': 'integration',
            'success': False,
            'reason': 'Required files missing'
        }
    else:
        info = xds.parse_integrate()
        info['statistics'] = xds.parse_correct()

    if info.get('failure') is None:
        info['output_file'] = 'INTEGRATE.HKL'
        return {'step': 'integration', 'success': True, 'data': info}
    else:
        return {
            'step': 'integration',
            'success': False,
            'reason': info['failure']
        }
Exemplo n.º 9
0
def solve_small_molecule(info, options=None):
    options = options or {}
    os.chdir(options.get('directory', '.'))
    _logger.info("Solving small-molecule structure ...")
    if not misc.file_requirements('%s-shelx.hkl' % info['name']):
        print(("File not found %s-shelx.hkl" % info['name']))
        return {
            'step': 'symmetry',
            'success': False,
            'reason': 'Required reflection files missing'
        }

    try:
        programs.shelx_sm(info['name'], info['unit_cell'], info['formula'])
    except (autoprocess.errors.ProcessError, autoprocess.errors.ParserError,
            IOError) as e:
        return {'step': 'symmetry', 'success': False, 'reason': str(e)}

    _smx_dir = os.path.relpath(
        os.path.join(options.get('directory', '.'), 'shelx-sm', info['name']),
        options.get('command_dir'))
    _logger.info('Coordinates: %s.res, Phases: %s.fcf' % (_smx_dir, _smx_dir))

    return {'step': 'smx_structure', 'success': True, 'data': None}
Exemplo n.º 10
0
def auto_index(data_info, options=None):
    options = options or {}
    os.chdir(data_info['working_directory'])
    step_descr = 'Determining lattice orientation and parameters'
    jobs = 'IDXREF'
    run_info = {'mode': options.get('mode')}
    run_info.update(data_info)
    if not misc.file_requirements('XDS.INP', 'SPOT.XDS'):
        return {
            'step': 'indexing',
            'success': False,
            'reason': "Required files not found"
        }
    try:

        xdsio.write_xds_input(jobs, run_info)
        programs.xds_par(step_descr)
        info = xds.parse_idxref()
        diagnosis = diagnose_index(info)

        _retries = 0
        sigma = 6
        spot_size = 3
        _aliens_removed = False
        _weak_removed = False
        _spot_adjusted = False

        while info.get('failure_code') > 0 and _retries < 8:
            _all_images = (run_info['spot_range'][0] == run_info['data_range'])
            _retries += 1
            _logger.warning('Indexing failed:')
            for prob in diagnosis['problems']:
                _logger.warning('... {}'.format(PROBLEMS[prob]))

            if options.get('backup', False):
                misc.backup_files('SPOT.XDS', 'IDXREF.LP')

            if diagnosis['problems'] & {PROBLEMS.index_origin}:
                if not _all_images:
                    step_descr = '-> Expanding Spot Range'
                    run_info['spot_range'] = [run_info['data_range']]
                else:
                    step_descr = '-> Adjusting detector origin'
                    run_info['beam_center'] = diagnosis['options'].get(
                        'beam_center', run_info['beam_center'])
                xdsio.write_xds_input('COLSPOT IDXREF', run_info)
                programs.xds_par(step_descr)
                info = xds.parse_idxref()
                diagnosis = diagnose_index(info)
            elif (diagnosis['problems']
                  & {PROBLEMS.few_spots, PROBLEMS.dimension_2d
                     }) and not _all_images:
                run_info.update(spot_range=[run_info['data_range']])
                xdsio.write_xds_input('IDXREF', run_info)
                programs.xds_par('-> Expanding Spot Range')
                info = xds.parse_idxref()
                diagnosis = diagnose_index(info)
            elif (diagnosis['problems'] & {
                    PROBLEMS.poor_solution, PROBLEMS.spot_accuracy,
                    PROBLEMS.non_integral
            }) and not _spot_adjusted:
                spot_size *= 1.5
                sigma = 6
                new_params = {
                    'sigma': sigma,
                    'min_spot_size': spot_size,
                    'refine_index': "CELL BEAM ORIENTATION AXIS"
                }
                if not _all_images:
                    new_params['spot_range'] = [run_info['data_range']]
                run_info.update(new_params)
                xdsio.write_xds_input('COLSPOT IDXREF', run_info)
                programs.xds_par(
                    '-> Adjusting spot size and refinement parameters')
                info = xds.parse_idxref()
                diagnosis = diagnose_index(info)
                _spot_adjusted = spot_size > 12
            elif (diagnosis['problems']
                  & {PROBLEMS.unindexed_spots}) and not _weak_removed:
                sigma += 3
                _filter_spots(sigma=sigma)
                run_info.update(sigma=sigma)
                xdsio.write_xds_input('IDXREF', run_info)
                programs.xds_par(
                    '-> Removing weak spots (Sigma < {:2.0f})'.format(sigma))
                info = xds.parse_idxref()
                diagnosis = diagnose_index(info)
                _weak_removed = sigma >= 12
            elif (diagnosis['problems']
                  & {PROBLEMS.unindexed_spots, PROBLEMS.multiple_subtrees
                     }) and not _aliens_removed:
                _filter_spots(unindexed=True)
                xdsio.write_xds_input(jobs, run_info)
                programs.xds_par('-> Removing all alien spots')
                info = xds.parse_idxref()
                diagnosis = diagnose_index(info)
                _aliens_removed = True
            else:
                _logger.critical('.. Unable to proceed.')
                _retries = 999

    except autoprocess.errors.ProcessError as e:
        return {'step': 'indexing', 'success': False, 'reason': str(e)}

    if info.get('failure_code') == 0:
        return {'step': 'indexing', 'success': True, 'data': info}
    else:
        return {
            'step': 'indexing',
            'success': False,
            'reason': info['failure']
        }
Exemplo n.º 11
0
def convert_formats(dataset, options=None):
    options = options or {}
    os.chdir(options['directory'])

    # GENERATE MTZ and CNS output files
    infile = dataset.results['scaling'].get('output_file')
    out_file_dir = os.path.dirname(infile)
    out_file_base = os.path.basename(infile)
    out_file_root = os.path.join(out_file_dir,
                                 options.get('file_root', dataset.name))
    output_files = []

    logger.info(
        'Generating MTZ, SHELX & CNS files from {} ...'.format(out_file_base))
    if not misc.file_requirements(
            dataset.results['scaling'].get('output_file')):
        return {
            'step': 'conversion',
            'success': False,
            'reason': 'Required files missing'
        }

    # Create convertion options
    conv_options = [{
        'resolution': 0,
        'format': 'CNS',
        'anomalous': options.get('anomalous', False),
        'input_file': infile,
        'output_file': out_file_root + ".cns",
        'freeR_fraction': 0.05
    }, {
        'resolution': 0,
        'format': 'SHELX',
        'anomalous': options.get('anomalous', False),
        'input_file': infile,
        'output_file': out_file_root + "-shelx.hkl",
        'freeR_fraction': 0,
    }, {
        'resolution': 0,
        'format': 'CCP4_I',
        'anomalous': True,
        'input_file': infile,
        'output_file': out_file_root + ".ccp4i",
        'freeR_fraction': 0.05,
    }]

    for opt in conv_options:
        try:
            if opt['format'] == 'CCP4_I':
                out_file = out_file_root + ".mtz"
                out_format = 'MTZ'
            else:
                out_file = opt['output_file']
                out_format = opt['format']

            xdsio.write_xdsconv_input(opt)
            label = f'Preparing {out_format} output file'
            programs.xdsconv(label=f'{label:<27}',
                             final=log.TermColor.bold(out_file))

            # Special formatting for MTZ
            if opt['format'] == 'CCP4_I':
                mtz_file = out_file_root + ".mtz"
                programs.f2mtz(mtz_file)
                output_files.append(mtz_file)
            else:
                output_files.append(opt['output_file'])

        except autoprocess.errors.ProcessError as e:
            logger.warning(f'Error creating {opt["format"]} file: {e}')

    if len(output_files) == 0:
        return {
            'step': 'conversion',
            'success': False,
            'reason': 'No output files generated'
        }
    else:
        return {'step': 'conversion', 'success': True, 'data': output_files}
Exemplo n.º 12
0
def integrate(data_info, options=None):
    options = {} if options is None else options
    os.chdir(data_info['working_directory'])
    run_info = {'mode': options.get('mode')}
    run_info.update(data_info)
    if options.get('backup', False):
        misc.backup_files('INTEGRATE.LP', 'INTEGRATE.HKL')

    # if optimizing the integration, copy GXPARM
    # Calculate actual number of frames
    full_range = list(
        range(run_info['data_range'][0], run_info['data_range'][1] + 1))
    skip_ranges = []
    for r_s, r_e in run_info['skip_range']:
        skip_ranges.extend(list(range(r_s, r_e + 1)))
    num_frames = len(set(full_range) - set(skip_ranges))

    if options.get('optimize', False) and os.path.exists('GXPARM.XDS'):
        misc.backup_files('XPARM.XDS')
        shutil.copy('GXPARM.XDS', 'XPARM.XDS')
        step_descr = 'Optimizing {:d} frames of dataset {}'.format(
            num_frames, log.TermColor.italics(data_info['name']))
    else:
        step_descr = 'Integrating {:d} frames of dataset {}'.format(
            num_frames, log.TermColor.italics(data_info['name']))

    # check if we are screening
    screening = options.get('mode') == 'screen'

    xdsio.write_xds_input("DEFPIX INTEGRATE", run_info)
    if not misc.file_requirements('X-CORRECTIONS.cbf', 'Y-CORRECTIONS.cbf',
                                  'XPARM.XDS'):
        return {
            'step': 'integration',
            'success': False,
            'reason': 'Required files missing'
        }

    try:
        programs.xds_par(step_descr)
        info = xds.parse_integrate()
    except autoprocess.errors.ProcessError as e:
        return {'step': 'integration', 'success': False, 'reason': str(e)}
    except:
        return {
            'step': 'integration',
            'success': False,
            'reason': "Could not parse integrate output file"
        }
    else:
        pass

    if info.get('failure') is None:
        if data_info['working_directory'] == options.get('directory'):
            info['output_file'] = 'INTEGRATE.HKL'
        else:
            info['output_file'] = os.path.join(data_info['name'],
                                               'INTEGRATE.HKL')
        return {'step': 'integration', 'success': True, 'data': info}
    else:
        return {
            'step': 'integration',
            'success': False,
            'reason': info['failure']
        }
Exemplo n.º 13
0
def correct(data_info, options=None):
    options = options or {}
    os.chdir(data_info['working_directory'])
    message = options.get('message', "Applying corrections to")
    step_descr = '{} dataset "{}" for space-group {}'.format(
        message, data_info['name'], xtal.SG_SYMBOLS[data_info['space_group']])
    run_info = {'mode': options.get('mode')}
    run_info.update(data_info)

    if not misc.file_requirements('INTEGRATE.HKL', 'X-CORRECTIONS.cbf',
                                  'Y-CORRECTIONS.cbf'):
        return {
            'step': 'correction',
            'success': False,
            'reason': 'Required files missing'
        }

    if options.get('backup', False):
        misc.backup_files('XDS_ASCII.HKL', 'CORRECT.LP')
    xdsio.write_xds_input("CORRECT", run_info)

    try:
        programs.xds_par(step_descr)
        info = xds.parse_correct()

        # enable correction factors if anomalous data and repeat correction
        if info.get('correction_factors') is not None and options.get(
                'anomalous', False):
            for f in info['correction_factors'].get('factors', []):
                if abs(f['chi_sq_fit'] - 1.0) > 0.25:
                    run_info.update({'strict_absorption': True})
                    xdsio.write_xds_input("CORRECT", run_info)
                    programs.xds_par()
                    info = xds.parse_correct()
                    info['strict_absorption'] = True
                    break

        # Extra statistics
        if data_info['working_directory'] == options.get('directory'):
            info['output_file'] = 'XDS_ASCII.HKL'
        else:
            sub_dir = os.path.relpath(data_info['working_directory'],
                                      options.get('directory', ''))
            info['output_file'] = os.path.join(sub_dir, 'XDS_ASCII.HKL')

        programs.xdsstat('XDS_ASCII.HKL')
        stat_info = xds.parse_xdsstat()
        info.update(stat_info)

    except autoprocess.errors.ProcessError as e:
        return {'step': 'correction', 'success': False, 'reason': str(e)}

    if info.get('failure') is None:
        if len(info.get('statistics',
                        [])) > 1 and info.get('summary') is not None:
            info['summary']['resolution'] = xtal.select_resolution(
                info['statistics'])

        return {'step': 'correction', 'success': True, 'data': info}
    else:
        return {
            'step': 'correction',
            'success': False,
            'reason': info['failure']
        }