Exemplo n.º 1
0
    def calculate_transform(self):
        """Form the linear transform matrix.

        Returns:
            Transform: a Transform

        """

        image_orientation = np.array(
            self.get_parameter('ImageOrientationPatient'))
        flip = np.array([-1, -1, 1])
        R = np.vstack(
            (image_orientation[0:3] * flip, image_orientation[3:6] * flip))
        R = np.vstack((R, -np.cross(R[0, :], R[1, :]))).T

        T_matrix = np.eye(4)
        T_matrix[0:3, 0:3] = R

        T_matrix = np.dot(
            T_matrix,
            np.diag([
                self.get_parameter('VoiReadoutFoV'),
                self.get_parameter('VoiPhaseFoV'),
                self.get_parameter('VoiThickness'), 1
            ]))
        T_matrix[0:3, 3] = np.array(self.get_parameter('VoiPosition')) * flip

        self.T_matrix = T_matrix
        self.qform = Transform(T_matrix)

        return (self.qform)
Exemplo n.º 2
0
def make_voi(t1_nifti, voi_tform):
	""" Creates a volumetric ROI for SVS data.

	Parameters:
		t1_nifti (Nifti1Image): A Nifti1Image with an affine transform
		voi_tform (Transform): A Transform with the affine for the voxel

	Returns:
		img (Nifti1Image): A binary image of the voxel in T1 space

	"""
	
	t1_aff = Transform(t1_nifti.get_qform())
	t1_aff_inv = t1_aff.get_inverse()
	composed_affine = t1_aff_inv * voi_tform


	mrs_corners = [[-0.5, -0.5, -0.5, 1], #0
               [-0.5, -0.5,  0.5, 1], #1
               [-0.5,  0.5, -0.5, 1], #2
               [-0.5,  0.5,  0.5, 1], #3
               [ 0.5, -0.5, -0.5, 1], #4
               [ 0.5, -0.5,  0.5, 1], #5
               [ 0.5,  0.5, -0.5, 1], #6
               [ 0.5,  0.5,  0.5, 1]] #7

	#don't round off here
	t1_corners = np.array([(np.dot(composed_affine.get_matrix(), c)) for c in mrs_corners]).squeeze()
	t1_data = t1_nifti.get_data().squeeze()
	mrs_roi = np.ones_like(t1_data) * 0

	#exhaustive search for points in the voxel
	tri = spatial.Delaunay(t1_corners[:,0:3])
	for i in range(np.floor(min(t1_corners[:,0])).astype(int),np.ceil(max(t1_corners[:,0])).astype(int)):
	    for j in range(np.floor(min(t1_corners[:,1])).astype(int),np.ceil(max(t1_corners[:,1])).astype(int)):
	        for k in range(np.floor(min(t1_corners[:,2])).astype(int),np.ceil(max(t1_corners[:,2])).astype(int)):
	            mrs_roi[i,j,k] = tri.find_simplex([i,j,k]) >=0

	img = nib.Nifti1Image(mrs_roi, t1_aff.get_matrix())

	return(img)
Exemplo n.º 3
0
class Siemens(object):
    """Utility class for manipulating Siemens SVS DICOM files.

    Attributes:
        path (str): Full path to the originating DICOM
        csa (obj): CSA header dictionary
        meta (obj): Selected CSA fields
        T (:obj:`Transform`): NIfTI compatible transform
    """

    csa = None
    qform = None
    path = None
    meta = {}
    data = None
    files = None

    def __init__(self, path):
        """Initialize a Siemens object from a DICOM file or directory.
        If a directory is given, read the first DICOM file in the directory.


        Args:
            path (str): The path to a Siemens SVS DICOM file or directory of
                DICOM files.

        """
        self.path = os.path.realpath(path)
        dcmfile = None
        if os.path.isdir(self.path):
            # find the first dicom file to read meta data from
            files = os.listdir(self.path)
            # exclude any non dicoms
            files = [
                f for f in files
                if (os.path.isfile(os.path.join(self.path, f)) and f.endswith((
                    '.DCM', '.dcm', '.ima', '.IMA')) and not f.startswith('.'))
            ]
            if len(files) == 0:
                raise FileNotFoundError('No DICOM files found')

            self.files = sorted(files)

            dcmfile = os.path.join(self.path, files[0])

            # a single file, change the path
            if len(files) == 1:
                path = os.path.join(self.path, files[0])
                self.path = path

            if not (dcmfile):
                raise FileNotFoundError('No DICOM files found')

        else:
            dcmfile = path

        dcm = dcmwrapper.wrapper_from_file(dcmfile)
        self.csa = csareader.get_csa_header(dcm.dcm_data)

        scalar_fields = [
            'MagneticFieldStrength', 'ImagingFrequency', 'MixingTime',
            'EchoTime', 'RepetitionTime', 'ImaCoilString', 'SequenceName',
            'VoiReadoutFoV', 'VoiPhaseFoV', 'VoiThickness',
            'VoiInPlaneRotation', 'DataPointColumns', 'RealDwellTime',
            'PixelBandwidth', 'ImagedNucleus'
        ]

        for k in scalar_fields:
            self.meta[k] = csareader.get_scalar(self.csa, k)

        self.meta['ImagePositionPatient'] = \
            csareader.get_vector(self.csa, 'ImagePositionPatient', 3)
        self.meta['VoiPosition'] = csareader.get_vector(
            self.csa, 'VoiPosition', 3)
        self.meta['VoiOrientation'] = csareader.get_vector(
            self.csa, 'VoiOrientation', 3)
        self.meta['ImageOrientationPatient'] = \
            csareader.get_vector(self.csa, 'ImageOrientationPatient', 6)

    def get_parameter(self, k):
        """Get the value for the specified CSA key, with attempts to cast

        Args:
            k (str): a selected CSA key

        Returns:
            The value of the key
        """

        if k not in self.meta.keys():
            raise KeyError()

        # try to cast

        v = self.meta[k]

        # return non scalar values directly
        if isinstance(v, (list, tuple, np.ndarray)):
            return (v)

        # int
        iv = None
        try:
            iv = int(v)
        except ValueError:
            pass

        # float
        fv = None
        try:
            fv = float(v)
        except ValueError:
            pass

        if (iv is not None) and (fv is not None):
            if iv == fv:
                return (iv)
            else:
                return (fv)
        else:
            if iv is not None:
                return (iv)
            if fv is not None:
                return (fv)

        # a string, if not leave the exception unhandled
        return (str(v))

    def calculate_transform(self):
        """Form the linear transform matrix.

        Returns:
            Transform: a Transform

        """

        image_orientation = np.array(
            self.get_parameter('ImageOrientationPatient'))
        flip = np.array([-1, -1, 1])
        R = np.vstack(
            (image_orientation[0:3] * flip, image_orientation[3:6] * flip))
        R = np.vstack((R, -np.cross(R[0, :], R[1, :]))).T

        T_matrix = np.eye(4)
        T_matrix[0:3, 0:3] = R

        T_matrix = np.dot(
            T_matrix,
            np.diag([
                self.get_parameter('VoiReadoutFoV'),
                self.get_parameter('VoiPhaseFoV'),
                self.get_parameter('VoiThickness'), 1
            ]))
        T_matrix[0:3, 3] = np.array(self.get_parameter('VoiPosition')) * flip

        self.T_matrix = T_matrix
        self.qform = Transform(T_matrix)

        return (self.qform)

    def read_data(self, conj=True):
        """Read the associated fids.
        If the instance was initialized with a directory, the directory is assumed
        to contain a single series in order.

        Dimensions are channel x rep x mega x isis x t
        """

        print('Reading data...')
        if os.path.isfile(self.path):
            dcm = dcmwrapper.wrapper_from_file(self.path)
            data = np.array(_read_fid(dcm), ndmin=5)
            self.dcm_data = dcm.dcm_data

        elif os.path.isdir(self.path):
            # read a directory of DICOMS, each containing one fid
            # the directory must contain more than one file, as this is checked
            # in the class constructor

            channels = []

            # find the instance number of the last dicom to calculate data size
            # this assumes different interleaved acquisitions have the same
            # (0020, 0012) Acquisition Number
            # true for eja sequences
            lastdcmfile = os.path.join(self.path, self.files[-1])
            lastdcm = dcmwrapper.wrapper_from_file(lastdcmfile)
            self.dcm_data = lastdcm.dcm_data
            lastinstance = int(lastdcm.get((0x0020, 0x0013)).value)

            # figure out which channels are on
            csa_series = csareader.get_csa_header(lastdcm.dcm_data, 'series')
            csa_image = csareader.get_csa_header(lastdcm.dcm_data, 'image')
            siemens_hdr = csa_series['tags']['MrPhoenixProtocol']['items'][0]
            m = re.findall(
                r"""sCoilSelectMeas.aRxCoilSelectData\[0\].asList\[(?P<coilnum>\d+)\].sCoilElementID.tElement\t = \t""(?P<coilname>[HENC]+\d+)"""
                "", siemens_hdr)
            channels = dict(m)
            channels = dict(zip(channels.values(), channels.keys()))
            n_channels = len(channels)
            self.channels = channels

            # is the data combined over channels?
            # mri_probedicom reports ucUncombImages, but where is this in the CSA?

            # the first two instances of uncombined eja sequences are single channels
            # TODO: figure out what they are
            # Assume the first match the last two, which are missing the same channel
            n_reps = lastinstance - 2

            is_combined = False
            # TODO: handle channel combined data
            if len(self.files) != (n_reps * (n_channels + 1)):
                # not enough files for uncombined data
                if len(self.files) == lastinstance:
                    warnings.warn('Assuming channels are combined')
                    n_reps = lastinstance
                    n_channels = 1
                    is_combined = True

                else:
                    raise Exception(
                        'Expected n_reps[%d] * (n_channels[%d] + 1 files' %
                        (n_reps, n_channels))

            data = np.zeros(
                (n_channels, n_reps, 1, 1,
                 int(csareader.get_scalar(csa_image, 'DataPointColumns'))),
                dtype=complex)

            for fi in range(len(self.files)):
                dcmfile = os.path.join(self.path, self.files[fi])
                dcm = dcmwrapper.wrapper_from_file(dcmfile)
                csa = csareader.get_csa_header(dcm.dcm_data)
                fid = np.array(_read_fid(dcm), ndmin=5)
                channel = csareader.get_scalar(csa, 'ImaCoilString')
                inst = int(dcm.get((0x0020, 0x0013)).value)

                if not is_combined:
                    if inst <= 2:
                        ri = n_reps - inst
                    else:
                        ri = inst - 2 - 1
                else:
                    ri = inst - 1

                # there are combined coils (HC1-7) in the dicoms?
                # make sure this channel is one that is turned on
                if not is_combined:
                    if channel in channels.keys():
                        ci = int(channels[channel])
                        data[ci, ri, 0, 0, :] = fid
                else:
                    data[0, ri, 0, 0, :] = fid

            print('Read %d acquisitions from %d channels' %
                  (n_reps, n_channels))
            print(channels.keys())
        # take the complex conjugate, which Tarquin seems to expect
        if conj:
            data = np.conj(data)

        # permute data for SPECIAL and MEGA

        if self.get_parameter('SequenceName') in [
                'eja_svs_mpress', 'eja_svs_mslaser'
        ]:
            data_on = data[:, 0:int(n_reps / 2.), 0, ::]
            data_off = data[:, int(n_reps / 2.):n_reps, 0, ::]
            data = np.stack((data_off, data_on), 2)
            #data = np.reshape(data, (n_channels, int(n_reps/2.), 2, 1, self.get_parameter('DataPointColumns')))

        self.data = data
        return (data)

    def get_svsdata(self):
        if self.data is None:
            self.read_data()

        if self.qform is None:
            self.calculate_transform()

        data = svsdata.SVSData()
        data.fid = self.data
        data.transform = self.qform
        data.sequence_name = self.get_parameter('SequenceName')
        data.tr = self.get_parameter('RepetitionTime') / 1000.0
        data.te = self.get_parameter('EchoTime') / 1000.0
        data.tm = self.get_parameter('MixingTime') / 1000.0
        data.nucleus = self.get_parameter('ImagedNucleus')
        data.larmor = self.get_parameter('ImagingFrequency') * 1.0e6
        dt = self.get_parameter('RealDwellTime') * 1.0e-9
        sw = 1.0 / dt
        data.sw = sw
        npts = self.get_parameter('DataPointColumns')
        data.f = np.arange(-sw / 2.0 + sw / (2 * npts), sw / 2, sw / npts)

        data.t = np.arange(0, npts * dt, dt)

        return (data)

    def get_sidecar(self):
        """Returns a BIDS-style sidecar
        """

        json_dict = _csa_to_dict(self.csa)
        # data has to be read in to count channels
        if self.data is None:
            self.read_data()
        json_dict['ReceiveCoilActiveElements'] = list(self.channels.keys())
        json_dict.pop('ImaCoilString', None)
        if self.qform is None:
            self.calculate_transform()
        json_dict['Transform'] = np.squeeze(np.asarray(
            self.qform.get_matrix())).tolist()

        dicom_tags = [((0x0008, 0x0060), 'Modality'),
                      ((0x0008, 0x0008), 'ImageType'),
                      ((0x0008, 0x0070), 'Manufacturer'),
                      ((0x0008, 0x0080), 'InstitutionName'),
                      ((0x0008, 0x0081), 'InstitutionAddress'),
                      ((0x0008, 0x1010), 'StationName'),
                      ((0x0008, 0x1030), 'StudyDescription'),
                      ((0x0008, 0x103e), 'SeriesDescription'),
                      ((0x0008, 0x1090), 'ManufacturersModelName'),
                      ((0x0018, 0x0015), 'BodyPartExamined'),
                      ((0x0018, 0x1000), 'DeviceSerialNumber'),
                      ((0x0018, 0x1020), 'SoftwareVersions'),
                      ((0x0018, 0x1030), 'ProtocolName'),
                      ((0x0018, 0x5100), 'PatientPosition'),
                      ((0x0020, 0x0011), 'SeriesNumber'),
                      ((0x0020, 0x0012), 'AcquisitionNumber'),
                      ((0x0020, 0x4000), 'ImageComments')]

        for tag in dicom_tags:
            json_dict[tag[1]] = self.dcm_data.get(tag[0]).value

        json_dict.pop('ReferencedImageSequence', None)
        json_dict.pop('ScanningSequence')

        json_dict.update({'ImageType': list(json_dict['ImageType'])})
        json_dict.update({'SeriesNumber': int(json_dict['SeriesNumber'])})
        json_dict.update(
            {'AcquisitionNumber': int(json_dict['AcquisitionNumber'])})
        return (json_dict)
Exemplo n.º 4
0
def test_rotx():

    I = Transform(np.eye(4))
    I.rotx(45)
    assert (approx(I.tform) == [[1, 0, 0, 0], [0, SQRT2, -SQRT2, 0],
                                [0, SQRT2, SQRT2, 0], [0, 0, 0, 1]])
Exemplo n.º 5
0
def test_concat():
    targ = [[SQRT2, 0, SQRT2, 0], [.5, SQRT2, -.5, 0], [-.5, SQRT2, .5, 0],
            [0, 0, 0, 1]]

    I = Transform(np.eye(4))

    rx = Transform(np.eye(4))
    rx.rotx(45)

    ry = Transform(np.eye(4))
    ry.roty(45)

    I.concatenate_matrix(rx.tform)
    I.concatenate_matrix(ry.tform)

    assert approx(I.tform) == targ

    # overload
    I2 = Transform(np.eye(4))
    X = I2 * rx * ry
    assert approx(X.tform) == targ
Exemplo n.º 6
0
def test_scale():
    I = Transform(np.eye(4))
    I.scaleXYZ(2, 3, 4)

    assert (I.tform == np.diag([2, 3, 4, 1])).all()
    assert (I.get_scale() == [2, 3, 4]).all()

    I2 = Transform(np.eye(4))
    I2.scale([2, 3, 4])
    assert (I.get_scale() == I2.get_scale()).all()
Exemplo n.º 7
0
def test_rotz():
    I = Transform(np.eye(4))
    I.rotz(45)
    assert approx(I.tform) == [[SQRT2, -SQRT2, 0, 0], [SQRT2, SQRT2, 0, 0],
                               [0, 0, 1, 0], [0, 0, 0, 1]]
Exemplo n.º 8
0
    for i in range(3):
        if pos[i] < 0:
            d = directions_neg[i]
        else:
            d = directions_pos[i]

        direction_string.append('%s%0.0f' % (d, np.abs(pos[i])))

    return (' '.join(direction_string))


# load the MNI template
FSLDIR = os.getenv('FSLDIR', '/usr/local/fsl')
mni_nifti = nib.load(os.path.join(FSLDIR,
                                  'data/standard/MNI152_T1_1mm.nii.gz'))
mni_aff = Transform(mni_nifti.get_qform())

# load T1
t1_nifti = nib.load(args.t1_nifti)
t1_aff = t1_nifti.get_qform()
t1_inv = np.linalg.pinv(t1_aff)

# load native2mni FLIRT transform
native2mni = np.loadtxt(args.native2mni)

# load the template voxel spec, in mm
mrs_aff_orig = np.loadtxt(args.svs_transform)
mrs_mm_tform = Transform(mrs_aff_orig)
# get scaling factor of native2mni transform and scale the voxel to preserve size
# this is mm, so do before voxel conversion