def evaluate_one_dataset(LOG,
                         dataloader,
                         model,
                         opt,
                         save=True,
                         give_return=False,
                         epoch=0):
    """
    Compute evaluation metrics, update LOGGER and print results.

    Args:
        LOG:         aux.LOGGER-instance. Main Logging Functionality.
        dataloader:  PyTorch Dataloader, Testdata to be evaluated.
        model:       PyTorch Network, Network to evaluate.
        opt:         argparse.Namespace, contains all training-specific parameters.
        save:        bool, if True, Checkpoints are saved when testing metrics (specifically Recall @ 1) improve.
        give_return: bool, if True, return computed metrics.
        epoch:       int, current epoch, required for logger.
    Returns:
        (optional) Computed metrics. Are normally written directly to LOG and printed.
    """
    start = time.time()
    image_paths = np.array(dataloader.dataset.image_list)

    with torch.no_grad():
        #Compute Metrics
        F1, NMI, recall_at_ks, feature_matrix_all = aux.eval_metrics_one_dataset(
            model, dataloader, device=opt.device, k_vals=opt.k_vals, opt=opt)
        #Make printable summary string.
        result_str = ', '.join('@{0}: {1:.4f}'.format(k, rec)
                               for k, rec in zip(opt.k_vals, recall_at_ks))
        result_str = 'Epoch (Test) {0}: NMI [{1:.4f}] | F1 [{2:.4f}] | Recall [{3}]'.format(
            epoch, NMI, F1, result_str)

        if LOG is not None:
            if save:
                if not len(LOG.progress_saver['val']
                           ['Recall @ 1']) or recall_at_ks[0] > np.max(
                               LOG.progress_saver['val']['Recall @ 1']):
                    #Save Checkpoint
                    aux.set_checkpoint(
                        model, opt, LOG.progress_saver,
                        LOG.prop.save_path + '/checkpoint.pth.tar')
                    aux.recover_closest_one_dataset(
                        feature_matrix_all, image_paths,
                        LOG.prop.save_path + '/sample_recoveries.png')
            #Update logs.
            LOG.log('val', LOG.metrics_to_log['val'],
                    [epoch, np.round(time.time() - start), NMI, F1] +
                    recall_at_ks)

    print(result_str)
    if give_return:
        return recall_at_ks, NMI, F1
    else:
        None
def evaluate_multiple_datasets(LOG, dataloaders, model, opt, save=True, give_return=False, epoch=0):
    """
    Compute evaluation metrics, update LOGGER and print results, specifically for Multi-test datasets s.a. PKU Vehicle ID.

    Args:
        LOG:         aux.LOGGER-instance. Main Logging Functionality.
        dataloaders: List of PyTorch Dataloaders, test-dataloaders to evaluate.
        model:       PyTorch Network, Network to evaluate.
        opt:         argparse.Namespace, contains all training-specific parameters.
        save:        bool, if True, Checkpoints are saved when testing metrics (specifically Recall @ 1) improve.
        give_return: bool, if True, return computed metrics.
        epoch:       int, current epoch, required for logger.
    Returns:
        (optional) Computed metrics. Are normally written directly to LOG and printed.
    """
    start = time.time()

    csv_data = [epoch]

    with torch.no_grad():
        for i,dataloader in enumerate(dataloaders):
            print('Working on Set {}/{}'.format(i+1, len(dataloaders)))
            image_paths = np.array(dataloader.dataset.image_list)
            #Compute Metrics for specific testset.
            F1, NMI, recall_at_ks, feature_matrix_all = aux.eval_metrics_one_dataset(model, dataloader, device=opt.device, k_vals=opt.k_vals, opt=opt)
            #Generate printable summary string.
            result_str = ', '.join('@{0}: {1:.4f}'.format(k,rec) for k,rec in zip(opt.k_vals, recall_at_ks))
            result_str = 'SET {0}: Epoch (Test) {1}: NMI [{2:.4f}] | F1 {3:.4f}| Recall [{4}]'.format(i+1, epoch, NMI, F1, result_str)

            if LOG is not None:
                if save:
                    if not len(LOG.progress_saver['val']['Set {} Recall @ 1'.format(i)]) or recall_at_ks[0]>np.max(LOG.progress_saver['val']['Set {} Recall @ 1'.format(i)]):
                        #Save Checkpoint for specific test set.
                        aux.set_checkpoint(model, opt, LOG.progress_saver, LOG.prop.save_path+'/checkpoint_set{}.pth.tar'.format(i+1))
                        aux.recover_closest_one_dataset(feature_matrix_all, image_paths, LOG.prop.save_path+'/sample_recoveries_set{}.png'.format(i+1))

                csv_data += [NMI, F1]+recall_at_ks
            print(result_str)

    csv_data.insert(0, np.round(time.time()-start))
    #Update logs.
    LOG.log('val', LOG.metrics_to_log['val'], csv_data)


    if give_return:
        return csv_data[2:]
    else:
        None
Exemplo n.º 3
0
def validate(test_loader, model, args):
    # switch to evaluation mode
    model.eval()
    testdata = torch.Tensor()
    testlabel = torch.LongTensor()

    if  args.dataset == "online_products":
        nmi, recall = aux.eval_metrics_one_dataset(model, test_loader, device=args.device, k_vals=args.k_vals, opt=args)
    else:
        with torch.no_grad():
            testloader = tqdm(test_loader, desc='Epoch {} Testing...'.format(args.cur_epoch))
            for i, (input, target) in enumerate(testloader):
                if args.gpu is not None:
                    # input = input.cuda(args.gpu, non_blocking=True)
                    input = input.to(args.device)

                # compute output
                output = model(input)
                testdata = torch.cat((testdata, output.cpu()), 0)
                testlabel = torch.cat((testlabel, target))
            nmi, recall = eva.evaluation(testdata.numpy(), testlabel.numpy(), [1, 2, 4, 8])
    return nmi, recall
Exemplo n.º 4
0
#Get dataloaders, primarily the one for the test set. For that, point to the folder that contains the datasets:
opt.source_path = '<path_to_dataset>/' + opt.dataset
dataloaders = data.give_dataloaders(opt.dataset, opt)
opt.num_classes = len(dataloaders['training'].dataset.avail_classes)
opt.device = torch.device('cuda')
"""================================"""
#Compute test metrics - note that weights were stored at optimal R@1 performance.
_ = model.to(opt.device)
_ = model.eval()
start = time.time()
image_paths = np.array(dataloaders['testing'].dataset.image_list)
with torch.no_grad():
    evaltypes = ['Class']
    metrics, labels = aux.eval_metrics_one_dataset(model,
                                                   dataloaders['testing'],
                                                   device=opt.device,
                                                   k_vals=opt.k_vals,
                                                   opt=opt,
                                                   evaltypes=evaltypes)
    ###
    full_result_str = ''
    for evaltype in evaltypes:
        result_str = ', '.join(
            '@{0}: {1:.4f}'.format(k, rec)
            for k, rec in zip(opt.k_vals, metrics[evaltype]['Recall@k']))
        result_str = '{0}-embed: NMI [{1:.4f}] | F1 [{2:.4f}] | Recall [{3}]'.format(
            evaltype, metrics[evaltype]['NMI'], metrics[evaltype]['F1'],
            result_str)
        full_result_str += result_str + '\n'

print(full_result_str)
Exemplo n.º 5
0
def evaluate_one_dataset(LOG,
                         dataloader,
                         model,
                         opt,
                         spliteval=True,
                         evaltypes=['Class'],
                         save=True,
                         give_return=False,
                         aux_store=None,
                         epoch=0,
                         monitor_distances=True,
                         log_key='Test'):
    start = time.time()
    image_paths = np.array(dataloader.dataset.image_list)
    with torch.no_grad():
        metrics, labels = aux.eval_metrics_one_dataset(model,
                                                       dataloader,
                                                       device=opt.device,
                                                       spliteval=spliteval,
                                                       k_vals=opt.k_vals,
                                                       opt=opt,
                                                       evaltypes=evaltypes)

        ###
        full_result_str = ''
        for evaltype in evaltypes:
            result_str = ', '.join(
                '@{0}: {1:.4f}'.format(k, rec)
                for k, rec in zip(opt.k_vals, metrics[evaltype]['Recall@k']))
            result_str = '{0}-embed: NMI [{1:.4f}] | F1 [{2:.4f}] | Recall [{3}]'.format(
                evaltype, metrics[evaltype]['NMI'], metrics[evaltype]['F1'],
                result_str)
            full_result_str += result_str

        ###
        if LOG is not None:
            for evaltype in evaltypes:
                if save:
                    if (evaltype + '_Recall'
                            not in LOG.progress_saver[log_key].groups.keys()
                        ) or metrics[evaltype]['Recall@k'][0] > np.max(
                            LOG.progress_saver[log_key].groups[evaltype +
                                                               '_Recall']
                            ['Recall @ 1']['content']):
                        aux.set_checkpoint(
                            model,
                            opt,
                            LOG.progress_saver,
                            LOG.prop.save_path +
                            '/checkpoint_{}.pth.tar'.format(evaltype),
                            aux=aux_store)
                        aux.recover_closest_one_dataset(
                            metrics[evaltype]['Features'], image_paths,
                            LOG.prop.save_path + '/sample_recoveries.png')

                LOG.progress_saver[log_key].log('NMI',
                                                metrics[evaltype]['NMI'],
                                                group=evaltype + '_NMI')
                LOG.progress_saver[log_key].log('F1',
                                                metrics[evaltype]['F1'],
                                                group=evaltype + '_F1')
                for k_val, recall_val in zip(opt.k_vals,
                                             metrics[evaltype]['Recall@k']):
                    LOG.progress_saver[log_key].log(
                        'Recall @ {}'.format(k_val),
                        recall_val,
                        group=evaltype + '_Recall')

                if monitor_distances:
                    intra_dist, inter_dist = distance_measure(
                        metrics[evaltype]['Features'], labels)
                    LOG.progress_saver[log_key].log('Intraclass',
                                                    intra_dist,
                                                    group=evaltype +
                                                    '_Distances')
                    LOG.progress_saver[log_key].log('Interclass',
                                                    inter_dist,
                                                    group=evaltype +
                                                    '_Distances')

        LOG.progress_saver[log_key].log('Epochs', epoch, group='Epochs')
        LOG.progress_saver[log_key].log('Time',
                                        np.round(time.time() - start, 4),
                                        group='Time')

    print(full_result_str)
    if give_return:
        return metrics
    else:
        None