def test_3D_jagged(wrapped_tree):
    fake_3d = [[np.arange(i + 1) + j for i in range(j % 3)]
               for j in range(len(wrapped_tree))]
    fake_3d = JaggedArray.fromiter(fake_3d)
    wrapped_tree.new_variable("Fake3D", fake_3d)
    assert isinstance(fake_3d.count(), JaggedArray)
    assert all((fake_3d.copy().count() == fake_3d.count()).all())

    aliased = expressions.evaluate(wrapped_tree, "Fake3D")
    assert (aliased == fake_3d).all().all().all()

    doubled = expressions.evaluate(wrapped_tree, "Fake3D * 2")
    assert (doubled == fake_3d * 2).all().all().all()
    assert len(doubled[0, :, :]) == 0
    assert doubled[1, 0, :] == [2]
    assert doubled[2, 0, :] == [4]
    assert all(doubled[2, 1, :] == [4, 6])

    doubled = expressions.evaluate(wrapped_tree, "Fake3D + Fake3D")
    assert (doubled == fake_3d * 2).all().all().all()
    assert len(doubled[0, :, :]) == 0
    assert doubled[1, 0, :] == [2]
    assert doubled[2, 0, :] == [4]
    assert all(doubled[2, 1, :] == [4, 6])

    fake_3d_2 = [[np.arange(i + 3) + j for i in range(j % 2)]
                 for j in range(len(wrapped_tree))]
    fake_3d_2 = JaggedArray.fromiter(fake_3d_2)
    wrapped_tree.new_variable("SecondFake3D", fake_3d_2)

    with pytest.raises(RuntimeError) as e:
        expressions.evaluate(wrapped_tree, "SecondFake3D + Fake3D")
    assert "different jaggedness" in str(e)
Exemplo n.º 2
0
def NestNestObjArrayToJagged(objarr):
    """uproot read vector<vector<number>> TBranch
       as objectArray, this function convert it
       to JaggedJaggedArray
    """

    # jaggedArray of lists
    jaggedList = JaggedArray.fromiter(objarr)
    # flat to 1 level
    _jagged = JaggedArray.fromiter(jaggedList.content)

    return JaggedArray.fromoffsets(jaggedList.offsets, _jagged)
Exemplo n.º 3
0
def test_jagged_nth_3D(jagged_1):
    fake_3d = [[np.arange(i + 1) + j for i in range(j % 3)] for j in range(5)]
    fake_3d = JaggedArray.fromiter(fake_3d)
    get_second = reductions.JaggedNth(1, np.nan)
    reduced = get_second(fake_3d)
    assert len(reduced[0]) == 0
    assert len(reduced[1]) == 1
    assert np.isnan(reduced[1])
    assert len(reduced[2]) == 2
    assert np.isnan(reduced[2][0])
    assert reduced[2][1] == 3
    assert len(reduced[3]) == 0
    assert len(reduced[4]) == 1
    assert np.isnan(reduced[4])

    get_first = reductions.JaggedNth(0, np.nan)
    reduced = get_first(fake_3d)
    assert len(reduced[0]) == 0
    assert len(reduced[1]) == 1
    assert reduced[1][0] == 1
    assert len(reduced[2]) == 2
    assert reduced[2][0] == 2
    assert reduced[2][1] == 2
    assert len(reduced[3]) == 0
    assert len(reduced[4]) == 1
    assert reduced[4] == 4
Exemplo n.º 4
0
def jagged_1():
    return JaggedArray.fromiter([[0.0, 1.1, 2.2], [3.3, 4.4], [5.5],
                                 [6.6, 7.7, 8.8], [9.9, 10.0, 11.0], []])
Exemplo n.º 5
0
                                                  float(phi[ie][im]),
                                                  float(gpt[ie][gid[ie][im]]))
                        ]
                    else:
                        subres += [
                            roccor.kSmearMC(int(charge[ie][im]),
                                            float(pt[ie][im]),
                                            float(eta[ie][im]),
                                            float(phi[ie][im]),
                                            int(nl[ie][im]), float(u[ie][im]))
                        ]
                        suberr += [
                            roccor.kSmearMCerror(int(charge[ie][im]),
                                                 float(pt[ie][im]),
                                                 float(eta[ie][im]),
                                                 float(phi[ie][im]),
                                                 int(nl[ie][im]),
                                                 float(u[ie][im]))
                        ]
            res += [subres]
            err += [suberr]
    res = JaggedArray.fromiter(res)
    err = JaggedArray.fromiter(err)
    outres = res.flatten()
    outerr = err.flatten()
    np.save(fname.replace('.root', '_rochester.npy'), outres)
    np.save(fname.replace('.root', '_rochester_err.npy'), outerr)
    if not isData:
        outrand = np.concatenate([ui.flatten() for ui in fullu])
        np.save(fname.replace('.root', '_rochester_rand.npy'), outrand)
    loose_muons = muons[loose_muon_selection]
    loose_photons = photons[loose_photon_selection]
    selected_taus = taus[tau_selection]
    selected_jets = jets[jet_selection]
    # end seletion

    # clean leptons
    e_combinations = loose_electrons.p4.cross(selected_jets.p4, nested=True)
    mask = (e_combinations.i0.delta_r(e_combinations.i1) < 0.3).any()
    clean_electrons = loose_electrons[~mask]

    m_combinations = loose_muons.p4.cross(selected_jets.p4, nested=True)
    mask = (m_combinations.i0.delta_r(m_combinations.i1) < 0.3).any()
    clean_muons = loose_muons[mask]

    clean_leptons = JaggedArray.fromiter([clean_electrons, clean_muons])

    # once merge is done
    # mask = loose_electrons.p4.match(selected_jets.p4, 0.3)
    # clean electrons = loose_electrons[~mask]
    # end cleaning

    # weights evaluation
    e_counts = clean_electrons.counts
    e_sfTrigg = np.ones(clean_electrons.size)
    e_sfTrigg[e_counts > 0] = 1 - evaluator["hEffEtaPt"](
        clean_electrons.eta[e_counts > 0, 0], clean_electrons.pt[e_counts > 0,
                                                                 0])
    e_sfTrigg[e_counts > 1] = 1 - (1 - evaluator["hEffEtaPt"](
        clean_electrons.eta[e_counts > 1, 0],
        clean_electrons.pt[e_counts > 1, 0])) * (