Exemplo n.º 1
0
    def process(self, events):

        # Initialize accumulator
        out = self.accumulator.identity()

        # Event selection: opposite charged same flavor

        Electron = events.Electron
        Electron_mask = (Electron.pt > 20) & (np.abs(Electron.eta) <
                                              2.5) & (Electron.cutBased > 1)
        Ele_channel_mask = ak.num(Electron[Electron_mask]) > 1
        Ele_channel_events = events[Ele_channel_mask]
        Ele = Ele_channel_events.Electron

        # All possible pairs of Electron in each event
        ele_pairs = ak.combinations(Ele, 2, axis=1)

        # TLorentz vector sum of ele_pairs
        ele_left, ele_right = ak.unzip(ele_pairs)
        diele = ele_left + ele_right

        diffsign_diele = diele[diele.charge == 0]

        leading_diffsign_diele = diffsign_diele[ak.argmax(diffsign_diele.pt,
                                                          axis=1,
                                                          keepdims=True)]

        #Mee = ak.flatten(leading_diffsign_diele.mass) # This makes type error ( primitive expected but ?float given )
        Mee = ak.to_numpy(leading_diffsign_diele.mass)
        Mee = Mee.flatten()

        out.fill(dataset=events.metadata["dataset"], mass=Mee)

        return out
Exemplo n.º 2
0
    def nearest(self, other, metric=lambda a, b: a.delta_r(b), return_metric=False):
        """Return nearest object to this one

        Only works for first axis (i.e. top-level ListArrays)
        """
        a, b = awkward1.unzip(awkward1.cartesian([self, other], nested=True))
        mval = metric(a, b)
        mmin = awkward1.argmin(mval, axis=-1)
        if return_metric:
            return b[mmin], mval[mmin]
        return b[mmin]
Exemplo n.º 3
0
    def nearest(self,
                other,
                metric=lambda a, b: a.delta_r(b),
                return_metric=False):
        """Return nearest object to this one

        The default metric is `delta_r`.
        """
        a, b = awkward1.unzip(awkward1.cartesian([self, other], nested=True))
        mval = metric(a, b)
        mmin = awkward1.argmin(mval, axis=-1)
        if return_metric:
            return b[mmin], mval[mmin]
        return b[mmin]
Exemplo n.º 4
0
    def nearest(
        self,
        other,
        axis=1,
        metric=lambda a, b: a.delta_r(b),
        return_metric=False,
        threshold=None,
    ):
        """Return nearest object to this one

        Finds item in ``other`` satisfying ``min(metric(self, other))``.
        The two arrays should be broadcast-compatible on all axes other than the specified
        axis, which will be used to form a cartesian product. If axis=None, broadcast arrays directly.
        The return shape will be that of ``self``.

        Parameters
        ----------
            other : awkward1.Array
                Another array with same shape in all but ``axis``
            axis : int, optional
                The axis to form the cartesian product (default 1). If None, the metric
                is directly evaluated on the input arrays (i.e. they should broadcast)
            metric : callable
                A function of two arguments, returning a scalar. The default metric is `delta_r`.
            return_metric : bool, optional
                If true, return both the closest object and its metric (default false)
            threshold : Number, optional
                If set, any objects with ``metric > threshold`` will be masked from the result
        """
        if axis is None:
            a, b = self, other
            # NotImplementedError: ak.firsts with axis=-1
            axis = other.layout.purelist_depth - 2
        else:
            a, b = awkward1.unzip(
                awkward1.cartesian([self, other], axis=axis, nested=True)
            )
        mval = metric(a, b)
        # prefer keepdims=True: awkward-1.0 #434
        mmin = awkward1.singletons(awkward1.argmin(mval, axis=axis + 1))
        out = awkward1.firsts(b[mmin], axis=axis + 1)
        metric = awkward1.firsts(mval[mmin], axis=axis + 1)
        if threshold is not None:
            out = out.mask[metric <= threshold]
        if return_metric:
            return out, metric
        return out
Exemplo n.º 5
0
test = matchedJets.genJetIdx
combs = ak.combinations(finalJets, 3, replacement=False)
t1 = (combs['0'].genJetIdx == test[:, 0]) | (
    combs['0'].genJetIdx == test[:, 1]) | (combs['0'].genJetIdx == test[:, 2])
t2 = (combs['1'].genJetIdx == test[:, 0]) | (
    combs['1'].genJetIdx == test[:, 1]) | (combs['1'].genJetIdx == test[:, 2])
t3 = (combs['2'].genJetIdx == test[:, 0]) | (
    combs['2'].genJetIdx == test[:, 1]) | (combs['2'].genJetIdx == test[:, 2])
t = t1 & t2 & t3
trutharray = ak.flatten(t)

print("matching a validation array for every combo of 3 jets")

#Zipping into CSV for training
jetcombos = ak.flatten(combs)
j1, j2, j3 = ak.unzip(jetcombos)
dR1_2 = j1.delta_r(j2)
dR1_3 = j1.delta_r(j3)
dR2_3 = j2.delta_r(j3)
j1b_tag = j1.btagCSVV2
j2b_tag = j1.btagCSVV2
j3b_tag = j1.btagCSVV2
j1area = j1.area
j2area = j2.area
j3area = j3.area
j12deta = j1.eta - j2.eta
j23deta = j2.eta - j3.eta
j13deta = j1.eta - j3.eta
j12dphi = j1.phi - j2.phi
j23dphi = j2.phi - j3.phi
j13dphi = j1.phi - j3.phi
Exemplo n.º 6
0
events = t1.arrays([
    "HT",
    "CrossSection",
    "Tracks.fCoordinates.fX",
    "Tracks.fCoordinates.fY",
    "Tracks.fCoordinates.fZ",
    "Tracks_fromPV0",
    "Tracks_matchedToPFCandidate",
])  #, entry_start=99000)

jetsAK15 = t2.arrays([
    "jetsAK15_px",
    "jetsAK15_py",
    "jetsAK15_pz",
    "jetsAK15_E",
])

cut_events = events[events.HT > 1200]
cut_jetsAK15 = jetsAK15[events.HT > 1200]
HT, CrossSection, tracks_x, tracks_y, tracks_z, tracks_num_fromPV0, tracks_matched_to_candidate = ak.unzip(
    cut_events)

tracks_pt = np.sqrt(tracks_x**2 + tracks_y**2 + tracks_z**2)
tracks_eta = np.arcsinh(tracks_z / np.sqrt(tracks_x**2 + tracks_y**2))
tracks_E = np.sqrt(tracks_x**2 + tracks_y**2 + tracks_z**2 + 0.13957**2)

tracks_cut = (tracks_pt > 1) & abs(
    tracks_eta < 2.5) & (tracks_num_fromPV0 >= 2) & tracks_matched_to_candidate

s = eventShapesUtilities.sphericityTensor_uproot4(tracks)
def test_zip():
    x = awkward1.Array([[1, 2, 3], [], [4, 5], [6], [7, 8, 9, 10]])
    y = awkward1.Array([1.1, 2.2, 3.3, 4.4, 5.5])

    one = awkward1.zip({"x": x, "y": y})
    two = awkward1.zip({"x": x, "y": y}, depth_limit=1)
    xx, yy = awkward1.unzip(two)
    assert isinstance(one.layout, awkward1.layout.Content)
    assert isinstance(two.layout, awkward1.layout.Content)
    assert isinstance(xx.layout, awkward1.layout.Content)
    assert isinstance(yy.layout, awkward1.layout.Content)
    assert awkward1.to_list(one) == [[{
        "x": 1,
        "y": 1.1
    }, {
        "x": 2,
        "y": 1.1
    }, {
        "x": 3,
        "y": 1.1
    }], [], [{
        "x": 4,
        "y": 3.3
    }, {
        "x": 5,
        "y": 3.3
    }], [{
        "x": 6,
        "y": 4.4
    }],
                                     [{
                                         "x": 7,
                                         "y": 5.5
                                     }, {
                                         "x": 8,
                                         "y": 5.5
                                     }, {
                                         "x": 9,
                                         "y": 5.5
                                     }, {
                                         "x": 10,
                                         "y": 5.5
                                     }]]
    assert awkward1.to_list(two) == [{
        "x": [1, 2, 3],
        "y": 1.1
    }, {
        "x": [],
        "y": 2.2
    }, {
        "x": [4, 5],
        "y": 3.3
    }, {
        "x": [6],
        "y": 4.4
    }, {
        "x": [7, 8, 9, 10],
        "y": 5.5
    }]
    if not awkward1._util.py27 and not awkward1._util.py35:
        assert awkward1.to_list(xx) == [[1, 2, 3], [], [4, 5], [6],
                                        [7, 8, 9, 10]]
        assert awkward1.to_list(yy) == [1.1, 2.2, 3.3, 4.4, 5.5]

    x = awkward1.repartition(x, 3)
    assert isinstance(x.layout, awkward1.partition.PartitionedArray)
    assert awkward1.to_list(x) == [[1, 2, 3], [], [4, 5], [6], [7, 8, 9, 10]]

    one = awkward1.zip({"x": x, "y": y})
    two = awkward1.zip({"x": x, "y": y}, depth_limit=1)
    xx, yy = awkward1.unzip(two)
    assert isinstance(one.layout, awkward1.partition.PartitionedArray)
    assert isinstance(two.layout, awkward1.partition.PartitionedArray)
    assert isinstance(xx.layout, awkward1.partition.PartitionedArray)
    assert isinstance(yy.layout, awkward1.partition.PartitionedArray)
    assert awkward1.to_list(one) == [[{
        "x": 1,
        "y": 1.1
    }, {
        "x": 2,
        "y": 1.1
    }, {
        "x": 3,
        "y": 1.1
    }], [], [{
        "x": 4,
        "y": 3.3
    }, {
        "x": 5,
        "y": 3.3
    }], [{
        "x": 6,
        "y": 4.4
    }],
                                     [{
                                         "x": 7,
                                         "y": 5.5
                                     }, {
                                         "x": 8,
                                         "y": 5.5
                                     }, {
                                         "x": 9,
                                         "y": 5.5
                                     }, {
                                         "x": 10,
                                         "y": 5.5
                                     }]]
    assert awkward1.to_list(two) == [{
        "x": [1, 2, 3],
        "y": 1.1
    }, {
        "x": [],
        "y": 2.2
    }, {
        "x": [4, 5],
        "y": 3.3
    }, {
        "x": [6],
        "y": 4.4
    }, {
        "x": [7, 8, 9, 10],
        "y": 5.5
    }]
    if not awkward1._util.py27 and not awkward1._util.py35:
        assert awkward1.to_list(xx) == [[1, 2, 3], [], [4, 5], [6],
                                        [7, 8, 9, 10]]
        assert awkward1.to_list(yy) == [1.1, 2.2, 3.3, 4.4, 5.5]

    y = awkward1.repartition(y, 2)
    assert isinstance(x.layout, awkward1.partition.PartitionedArray)
    assert awkward1.to_list(y) == [1.1, 2.2, 3.3, 4.4, 5.5]

    one = awkward1.zip({"x": x, "y": y})
    two = awkward1.zip({"x": x, "y": y}, depth_limit=1)
    xx, yy = awkward1.unzip(two)
    assert isinstance(one.layout, awkward1.partition.PartitionedArray)
    assert isinstance(two.layout, awkward1.partition.PartitionedArray)
    assert isinstance(xx.layout, awkward1.partition.PartitionedArray)
    assert isinstance(yy.layout, awkward1.partition.PartitionedArray)
    assert awkward1.to_list(one) == [[{
        "x": 1,
        "y": 1.1
    }, {
        "x": 2,
        "y": 1.1
    }, {
        "x": 3,
        "y": 1.1
    }], [], [{
        "x": 4,
        "y": 3.3
    }, {
        "x": 5,
        "y": 3.3
    }], [{
        "x": 6,
        "y": 4.4
    }],
                                     [{
                                         "x": 7,
                                         "y": 5.5
                                     }, {
                                         "x": 8,
                                         "y": 5.5
                                     }, {
                                         "x": 9,
                                         "y": 5.5
                                     }, {
                                         "x": 10,
                                         "y": 5.5
                                     }]]
    assert awkward1.to_list(two) == [{
        "x": [1, 2, 3],
        "y": 1.1
    }, {
        "x": [],
        "y": 2.2
    }, {
        "x": [4, 5],
        "y": 3.3
    }, {
        "x": [6],
        "y": 4.4
    }, {
        "x": [7, 8, 9, 10],
        "y": 5.5
    }]
    if not awkward1._util.py27 and not awkward1._util.py35:
        assert awkward1.to_list(xx) == [[1, 2, 3], [], [4, 5], [6],
                                        [7, 8, 9, 10]]
        assert awkward1.to_list(yy) == [1.1, 2.2, 3.3, 4.4, 5.5]

    x = awkward1.repartition(x, None)
    assert isinstance(x.layout, awkward1.layout.Content)
    assert awkward1.to_list(x) == [[1, 2, 3], [], [4, 5], [6], [7, 8, 9, 10]]

    one = awkward1.zip({"x": x, "y": y})
    two = awkward1.zip({"x": x, "y": y}, depth_limit=1)
    xx, yy = awkward1.unzip(two)
    assert isinstance(one.layout, awkward1.partition.PartitionedArray)
    assert isinstance(two.layout, awkward1.partition.PartitionedArray)
    assert isinstance(xx.layout, awkward1.partition.PartitionedArray)
    assert isinstance(yy.layout, awkward1.partition.PartitionedArray)
    assert awkward1.to_list(one) == [[{
        "x": 1,
        "y": 1.1
    }, {
        "x": 2,
        "y": 1.1
    }, {
        "x": 3,
        "y": 1.1
    }], [], [{
        "x": 4,
        "y": 3.3
    }, {
        "x": 5,
        "y": 3.3
    }], [{
        "x": 6,
        "y": 4.4
    }],
                                     [{
                                         "x": 7,
                                         "y": 5.5
                                     }, {
                                         "x": 8,
                                         "y": 5.5
                                     }, {
                                         "x": 9,
                                         "y": 5.5
                                     }, {
                                         "x": 10,
                                         "y": 5.5
                                     }]]
    assert awkward1.to_list(two) == [{
        "x": [1, 2, 3],
        "y": 1.1
    }, {
        "x": [],
        "y": 2.2
    }, {
        "x": [4, 5],
        "y": 3.3
    }, {
        "x": [6],
        "y": 4.4
    }, {
        "x": [7, 8, 9, 10],
        "y": 5.5
    }]
    if not awkward1._util.py27 and not awkward1._util.py35:
        assert awkward1.to_list(xx) == [[1, 2, 3], [], [4, 5], [6],
                                        [7, 8, 9, 10]]
        assert awkward1.to_list(yy) == [1.1, 2.2, 3.3, 4.4, 5.5]

    y = awkward1.repartition(y, None)
    assert isinstance(y.layout, awkward1.layout.Content)
    assert awkward1.to_list(y) == [1.1, 2.2, 3.3, 4.4, 5.5]

    one = awkward1.zip({"x": x, "y": y})
    two = awkward1.zip({"x": x, "y": y}, depth_limit=1)
    xx, yy = awkward1.unzip(two)
    assert isinstance(one.layout, awkward1.layout.Content)
    assert isinstance(two.layout, awkward1.layout.Content)
    assert isinstance(xx.layout, awkward1.layout.Content)
    assert isinstance(yy.layout, awkward1.layout.Content)
    assert awkward1.to_list(one) == [[{
        "x": 1,
        "y": 1.1
    }, {
        "x": 2,
        "y": 1.1
    }, {
        "x": 3,
        "y": 1.1
    }], [], [{
        "x": 4,
        "y": 3.3
    }, {
        "x": 5,
        "y": 3.3
    }], [{
        "x": 6,
        "y": 4.4
    }],
                                     [{
                                         "x": 7,
                                         "y": 5.5
                                     }, {
                                         "x": 8,
                                         "y": 5.5
                                     }, {
                                         "x": 9,
                                         "y": 5.5
                                     }, {
                                         "x": 10,
                                         "y": 5.5
                                     }]]
    assert awkward1.to_list(two) == [{
        "x": [1, 2, 3],
        "y": 1.1
    }, {
        "x": [],
        "y": 2.2
    }, {
        "x": [4, 5],
        "y": 3.3
    }, {
        "x": [6],
        "y": 4.4
    }, {
        "x": [7, 8, 9, 10],
        "y": 5.5
    }]
    if not awkward1._util.py27 and not awkward1._util.py35:
        assert awkward1.to_list(xx) == [[1, 2, 3], [], [4, 5], [6],
                                        [7, 8, 9, 10]]
        assert awkward1.to_list(yy) == [1.1, 2.2, 3.3, 4.4, 5.5]
Exemplo n.º 8
0
	def process(self, events):

		# Initialize accumulator
		out = self.accumulator.identity()
		dataset = setname
		#events.metadata['dataset']
		

		isData = 'genWeight' not in events.fields
		

		selection = processor.PackedSelection()

		# Cut flow
		cut0 = np.zeros(len(events))
		

		# --- Selection

		# << flat dim helper function >>
		def flat_dim(arr):

			sub_arr = ak.flatten(arr)
			mask = ~ak.is_none(sub_arr)

			return ak.to_numpy(sub_arr[mask])
		# << drop na helper function >>
		def drop_na(arr):

			mask = ~ak.is_none(arr)

			return arr[mask]
		# << drop na helper function >>
		def drop_na_np(arr):

			mask = ~np.isnan(arr)

			return arr[mask]


		# double lepton trigger
		is_double_ele_trigger=True
		if not is_double_ele_trigger:
			double_ele_triggers_arr=np.ones(len(events), dtype=np.bool)
		else:
			double_ele_triggers_arr = np.zeros(len(events), dtype=np.bool)
			for path in self._doubleelectron_triggers[self._year]:
				if path not in events.HLT.fields: continue
				double_ele_triggers_arr = double_ele_triggers_arr | events.HLT[path]


		# single lepton trigger
		is_single_ele_trigger=True
		if not is_single_ele_trigger:
			single_ele_triggers_arr=np.ones(len(events), dtype=np.bool)
		else:
			single_ele_triggers_arr = np.zeros(len(events), dtype=np.bool)
			for path in self._singleelectron_triggers[self._year]:
				if path not in events.HLT.fields: continue
				single_ele_triggers_arr = single_ele_triggers_arr | events.HLT[path]


		
		Initial_events = events
		print("#### Initial events: ",Initial_events)
		#events = events[single_ele_triggers_arr | double_ele_triggers_arr]
		events = events[double_ele_triggers_arr]
		
		##----------- Cut flow1: Passing Triggers
		cut1 = np.ones(len(events))
		print("#### cut1: ",len(cut1))
		# Particle Identification
		Electron = events.Electron

		def Electron_selection(ele):
			return(ele.pt > 25) & (np.abs(ele.eta) < 2.5) & (ele.cutBased > 2)
		

		# Electron channel
		Electron_mask = Electron_selection(Electron)
		Ele_channel_mask = ak.num(Electron[Electron_mask]) > 1
		Ele_channel_events = events[Ele_channel_mask]


		##-----------  Cut flow2: Electron channel
		cut2 = np.ones(len(Ele_channel_events)) * 2
		print("#### cut2: ",len(cut2))
		
		# --- Calculate Scale factor weight
		
		if not isData:
			# PU weight with lookup table <-- On developing -->
			#get_pu_weight = self._corrections['get_pu_weight'][self._year]
			#pu = get_pu_weight(events.Pileup.nTrueInt)
	
			get_ele_reco_sf = self._corrections['get_ele_reco_sf'][self._year]
			get_ele_loose_id_sf = self._corrections['get_ele_loose_id_sf'][self._year]


			get_ele_trig_leg1_SF		= self._corrections['get_ele_trig_leg1_SF'][self._year]
			get_ele_trig_leg1_data_Eff	= self._corrections['get_ele_trig_leg1_data_Eff'][self._year]
			get_ele_trig_leg1_mc_Eff	= self._corrections['get_ele_trig_leg1_mc_Eff'][self._year]
			get_ele_trig_leg2_SF		= self._corrections['get_ele_trig_leg2_SF'][self._year]
			get_ele_trig_leg2_data_Eff  = self._corrections['get_ele_trig_leg2_data_Eff'][self._year]
			get_ele_trig_leg2_mc_Eff	= self._corrections['get_ele_trig_leg2_mc_Eff'][self._year]





			# PU weight with custom made npy and multi-indexing
			pu_weight_idx = ak.values_astype(Ele_channel_events.Pileup.nTrueInt,"int64")
			pu = self._puweight_arr[pu_weight_idx]
			nPV = Ele_channel_events.PV.npvsGood
		
		else:
			nPV = Ele_channel_events.PV.npvsGood


		# Electron array
		Ele = Ele_channel_events.Electron
		Electron_mask = Electron_selection(Ele)	
		Ele_sel = Ele[Electron_mask]	



		# Electron pair
		ele_pairs = ak.combinations(Ele_sel,2,axis=1)
		ele_left, ele_right = ak.unzip(ele_pairs)
		diele = ele_left + ele_right

		# OS
		os_mask		 = diele.charge == 0 
		os_diele	 = diele[os_mask]
		os_ele_left  = ele_left[os_mask]
		os_ele_right = ele_right[os_mask]
		os_event_mask = ak.num(os_diele) > 0
		Ele_os_channel_events = Ele_channel_events[os_event_mask]
		#selection.add('ossf',os_event_mask)


		# Helper function: High PT argmax
		def make_leading_pair(target,base):

			return target[ak.argmax(base.pt,axis=1,keepdims=True)]


		# -- Only Leading pair --
		leading_diele = make_leading_pair(diele,diele)
		leading_ele   = make_leading_pair(ele_left,diele)
		subleading_ele= make_leading_pair(ele_right,diele)

		# -- Scale Factor for each electron

		def Trigger_Weight(eta1,pt1,eta2,pt2):
			per_ev_MC =\
			get_ele_trig_leg1_mc_Eff(eta1,pt1) * get_ele_trig_leg2_mc_Eff(eta2,pt2) +\
			get_ele_trig_leg1_mc_Eff(eta2,pt2) * get_ele_trig_leg2_mc_Eff(eta1,pt1) -\
			get_ele_trig_leg1_mc_Eff(eta1,pt1) * get_ele_trig_leg1_mc_Eff(eta2,pt2)

			per_ev_data =\
			get_ele_trig_leg1_data_Eff(eta1,pt1) * get_ele_trig_leg1_SF(eta1,pt1) * get_ele_trig_leg2_data_Eff(eta2,pt2) * get_ele_trig_leg2_SF(eta2,pt2) +\
			get_ele_trig_leg1_data_Eff(eta2,pt2) * get_ele_trig_leg1_SF(eta2,pt2) * get_ele_trig_leg2_data_Eff(eta1,pt1) * get_ele_trig_leg2_SF(eta1,pt1) -\
			get_ele_trig_leg1_data_Eff(eta1,pt1) * get_ele_trig_leg1_SF(eta1,pt1) * get_ele_trig_leg1_data_Eff(eta2,pt2) * get_ele_trig_leg1_SF(eta2,pt2)

			return per_ev_data/per_ev_MC
			

		if not isData:
			ele_loose_id_sf = get_ele_loose_id_sf(ak.flatten(leading_ele.deltaEtaSC + leading_ele.eta),ak.flatten(leading_ele.pt))* get_ele_loose_id_sf(ak.flatten(subleading_ele.deltaEtaSC + subleading_ele.eta),ak.flatten(subleading_ele.pt))
			#print("Ele ID SC---->",ele_loose_id_sf)
			
			ele_reco_sf = get_ele_reco_sf(ak.flatten(leading_ele.deltaEtaSC + leading_ele.eta),ak.flatten(leading_ele.pt))* get_ele_reco_sf(ak.flatten(subleading_ele.deltaEtaSC + subleading_ele.eta),ak.flatten(subleading_ele.pt))
			#print("Ele RECO SC---->",ele_reco_sf)
		
		
			eta1 = ak.flatten(leading_ele.deltaEtaSC + leading_ele.eta)
			eta2 = ak.flatten(subleading_ele.deltaEtaSC + subleading_ele.eta)
			pt1  = ak.flatten(leading_ele.pt)	
			pt2  = ak.flatten(subleading_ele.pt)

			ele_trig_weight = Trigger_Weight(eta1,pt1,eta2,pt2)
			print("#### Test print trigger weight ####")
			print(ele_trig_weight)

		# --OS and Leading pair --
		leading_os_diele = make_leading_pair(os_diele,os_diele)
		leading_os_ele   = make_leading_pair(os_ele_left,os_diele)
		subleading_os_ele= make_leading_pair(os_ele_right,os_diele)

		##-----------  Cut flow3: OSSF
		cut3 = np.ones(len(flat_dim(leading_os_diele))) * 3
		print("#### cut3: ",len(cut3))

		# Helper function: Zmass window
		def makeZmass_window_mask(dielecs,start=60,end=120):
			mask = (dielecs.mass >= start) & (dielecs.mass <= end)	
			return mask

		# -- OS and Leading pair --
		Zmass_mask_os = makeZmass_window_mask(leading_os_diele)
		leading_os_Zwindow_ele = leading_os_ele[Zmass_mask_os]
		subleading_os_Zwindow_ele = subleading_os_ele[Zmass_mask_os]
		leading_os_Zwindow_diele = leading_os_diele[Zmass_mask_os]
		

		# for masking
		Zmass_event_mask = makeZmass_window_mask(leading_diele)
		Zmass_os_event_mask= ak.flatten(os_event_mask * Zmass_event_mask)
		

		Ele_Zmass_os_events = Ele_channel_events[Zmass_os_event_mask]

		##-----------  Cut flow4: Zmass
		cut4 = np.ones(len(flat_dim(leading_os_Zwindow_diele))) * 4
		print("#### cut4: ",len(cut4))


		
		## << Selection method -- Need validation >>
		#print("a--->",len(Ele_channel_events))
		#print("b--->",len(Ele_os_channel_events))
		#print("b2--->",len(cut3))
		#print("c--->",len(Ele_Zmass_os_events))
		#print("c2--->",len(cut4))


		ele1PT  = flat_dim(leading_os_Zwindow_ele.pt)
		ele1Eta = flat_dim(leading_os_Zwindow_ele.eta)
		ele1Phi = flat_dim(leading_os_Zwindow_ele.phi)
		ele2PT  = flat_dim(subleading_os_Zwindow_ele.pt)
		ele2Eta = flat_dim(subleading_os_Zwindow_ele.eta)
		ele2Phi = flat_dim(subleading_os_Zwindow_ele.phi)
		Mee	 = flat_dim(leading_os_Zwindow_diele.mass)
		charge  = flat_dim(leading_os_Zwindow_diele.charge)
		
		# --- Apply weight and hist  
		weights = processor.Weights(len(cut2))


		# --- skim cut-weight 
		def skim_weight(arr):
			mask1 = ~ak.is_none(arr)
			subarr = arr[mask1]
			mask2 = subarr !=0
			return ak.to_numpy(subarr[mask2])

		cuts = ak.flatten(Zmass_mask_os)
		if not isData:
			weights.add('pileup',pu)		
			weights.add('ele_id',ele_loose_id_sf)		
			weights.add('ele_reco',ele_reco_sf)		
			#weights.add('ele_trigger',ele_trig_weight)		

		# Initial events
		out["sumw"][dataset] += len(Initial_events)


		# Cut flow loop
		for cut in [cut0,cut1,cut2,cut3,cut4]:
			out["cutflow"].fill(
				dataset = dataset,
				cutflow=cut
			)

		

		# Primary vertex
		out['nPV'].fill(
			dataset=dataset,
			nPV = nPV,
			weight = weights.weight()
		)
		out['nPV_nw'].fill(
			dataset=dataset,
			nPV_nw = nPV
		)

		# Physics varibles passing Zwindow
		out["mass"].fill(
			dataset=dataset,
			mass=Mee,
			weight = skim_weight(weights.weight() * cuts)
		)
		out["ele1pt"].fill(
			dataset=dataset,
			ele1pt=ele1PT,
			weight = skim_weight(weights.weight() * cuts)
		)
		out["ele1eta"].fill(
			dataset=dataset,
			ele1eta=ele1Eta,
			weight = skim_weight(weights.weight() * cuts)
		)
		out["ele1phi"].fill(
			dataset=dataset,
			ele1phi=ele1Phi,
			weight = skim_weight(weights.weight() * cuts)
		)
		out["ele2pt"].fill(
			dataset=dataset,
			ele2pt=ele2PT,
			weight = skim_weight(weights.weight() * cuts)
		)
		out["ele2eta"].fill(
			dataset=dataset,
			ele2eta=ele2Eta,
			weight = skim_weight(weights.weight() * cuts)
		)
		out["ele2phi"].fill(
			dataset=dataset,
			ele2phi=ele2Phi,
			weight = skim_weight(weights.weight() * cuts)
		)
		return out
Exemplo n.º 9
0
def parse_to_parquet(
        base_output_filename: Union[Path, str],
        store_only_necessary_columns: bool,
        input_filename: Union[Path, str],
        events_per_chunk: int,
        parser: str = "pandas",
        max_chunks: int = -1,
        compression: str = "zstd",
        compression_level: Optional[int] = None) -> Iterator[ak.Array]:
    """ Parse the JETSCAPE ASCII and convert it to parquet, (potentially) storing only the minimum necessary columns.

    Args:
        base_output_filename: Basic output filename. Should include the entire path.
        store_only_necessary_columns: If True, store only the necessary columns, rather than all of them.
        input_filename: Filename of the input JETSCAPE ASCII file.
        events_per_chunk: Number of events to be read per chunk.
        parser: Name of the parser. Default: "pandas".
        max_chunks: Maximum number of chunks to read. Default: -1.
        compression: Compression algorithm for parquet. Default: "zstd". Options include: ["snappy", "gzip", "ztsd"].
            "gzip" is slightly better for storage, but slower. See the compression tests and parquet docs for more.
        compression_level: Compression level for parquet. Default: `None`, which lets parquet choose the best value.
    Returns:
        None. The parsed events are stored in parquet files.
    """
    # Validation
    base_output_filename = Path(base_output_filename)
    # Setup the base output filename
    if events_per_chunk > 0:
        base_output_filename = base_output_filename / base_output_filename.name
    base_output_filename.parent.mkdir(parents=True, exist_ok=True)

    for i, arrays in enumerate(
            read(filename=input_filename,
                 events_per_chunk=events_per_chunk,
                 parser=parser)):
        # Reduce to the minimum required data.
        if store_only_necessary_columns:
            arrays = full_events_to_only_necessary_columns_E_px_py_pz(arrays)

        # We limit the depth of the zip to ensure that we can write the parquet successfully.
        # (parquet can't handle lists of structs at the moment). Later, we'll recreate this
        # structure fully zipped together.
        ak.zip(dict(zip(ak.fields(arrays), ak.unzip(arrays))), depth_limit=1)

        # Parquet with zlib seems to do about the same as ascii tar.gz when we drop unneeded columns.
        # And it should load much faster!
        if events_per_chunk > 0:
            suffix = base_output_filename.suffix
            output_filename = (
                base_output_filename.parent /
                f"{base_output_filename.stem}_{i:02}").with_suffix(suffix)
        else:
            output_filename = base_output_filename
        ak.to_parquet(
            arrays,
            output_filename,
            compression=compression,
            compression_level=compression_level,
            # We run into a recursion limit or crash if there's a cut and we don't explode records. Probably a bug...
            # But it works fine if we explored records, so fine for now.
            explode_records=True,
        )

        # Break now so we don't have to read the next chunk.
        if (i + 1) == max_chunks:
            break
Exemplo n.º 10
0
#Open ROOT file from Pythia Delphes production with FCCSW
file = uproot.open(f"{path}/output/rootfiles/FCCDelphesOutput_100events.root")
tree = file['events'] #Get TTree from file

#Get the charged tracks
tr = tree.arrays(filter_name="pfcharged.core*")
tr["p"] = np.sqrt(tr["pfcharged.core.p4.px"]**2 + tr["pfcharged.core.p4.py"]**2 + tr["pfcharged.core.p4.pz"]**2)
tr["pt"] = np.sqrt(tr["pfcharged.core.p4.px"]**2 + tr["pfcharged.core.p4.py"]**2)
tr['eta'] = np.log((tr['p'] + tr['pfcharged.core.p4.pz'])/(tr['p'] - tr['pfcharged.core.p4.pz']))/2
tr['phi'] = np.arctan2(tr['pfcharged.core.p4.py'], tr['pfcharged.core.p4.px'])

#Pions
pi_cut = abs(tr["pfcharged.core.pdgId"]) == 211
pi = tr[pi_cut]
#Number of pions in each event
pi_sum = ak.num(pi_cut)
#Keep events with 2 or more pions
pi = pi[pi_sum >= 2]

#Make pion pairs per event
pi_pairs = ak.combinations(pi, 2)
#pt of first pion pair from first event
#print(pi_pairs[0]["pt"][0])

pi1, pi2 = ak.unzip(pi_pairs)

m_pipi = calc_invariant_mass(pi1, pi2)

plt.hist(ak.flatten(m_pipi),bins=400)
plt.show()
Exemplo n.º 11
0
    def process(self, events):

        # Initialize accumulator
        out = self.accumulator.identity()
        dataset = setname
        #events.metadata['dataset']

        isData = 'genWeight' not in events.fields

        selection = processor.PackedSelection()

        # --- Calculate Scale factor weight

        if not isData:
            # PU weight
            get_pu_weight = self._corrections['get_pu_weight'][self._year]
            pu = get_pu_weight(events.Pileup.nTrueInt)

        # --- Selection

        # flat dim helper function
        def flat_dim(arr):

            sub_arr = ak.flatten(arr)
            mask = ~ak.is_none(sub_arr)

            return ak.to_numpy(sub_arr[mask])

        # double lepton trigger
        is_double_ele_trigger = True
        if not is_double_ele_trigger:
            double_ele_triggers_arr = np.ones(len(events), dtype=np.bool)
        else:
            double_ele_triggers_arr = np.zeros(len(events), dtype=np.bool)
            for path in self._doubleelectron_triggers[self._year]:
                if path not in events.HLT.fields: continue
                double_ele_triggers_arr = double_ele_triggers_arr | events.HLT[
                    path]
        #print("Double Electron triggers")
        #print(double_ele_triggers_arr,len(double_ele_triggers_arr))

        # single lepton trigger
        is_single_ele_trigger = True
        if not is_single_ele_trigger:
            single_ele_triggers_arr = np.ones(len(events), dtype=np.bool)
        else:
            single_ele_triggers_arr = np.zeros(len(events), dtype=np.bool)
            for path in self._singleelectron_triggers[self._year]:
                if path not in events.HLT.fields: continue
                single_ele_triggers_arr = single_ele_triggers_arr | events.HLT[
                    path]
        #print("Single Electron triggers")
        #print(single_ele_triggers_arr,len(single_ele_triggers_arr))

        Initial_events = events
        print("{0} number of events are detected".format(len(Initial_events)))
        events = events[single_ele_triggers_arr | double_ele_triggers_arr]
        print(
            "Total {0} number of events are remain after triggger | Eff: {1}".
            format(len(events),
                   len(events) / len(Initial_events) * 100))

        # Particle Identification
        Electron = events.Electron

        def Electron_selection(ele):
            return (ele.pt > 20) & (np.abs(ele.eta) < 2.5) & (ele.cutBased > 1)

        # Electron channel
        Electron_mask = Electron_selection(Electron)
        Ele_channel_mask = ak.num(Electron[Electron_mask]) > 1
        Ele_channel_events = events[Ele_channel_mask]

        N_Ele_Channel_events = len(Ele_channel_events)
        print("#1 Ele channel evts: {0} --> {1}".format(
            len(events), N_Ele_Channel_events))

        # Electron array
        Ele = Ele_channel_events.Electron
        Electron_mask = Electron_selection(Ele)
        Ele_sel = Ele[Electron_mask]

        # Electron pair
        ele_pairs = ak.combinations(Ele_sel, 2, axis=1)
        ele_left, ele_right = ak.unzip(ele_pairs)
        diele = ele_left + ele_right

        # OS
        os_mask = diele.charge == 0
        os_diele = diele[os_mask]
        os_ele_left = ele_left[os_mask]
        os_ele_right = ele_right[os_mask]

        # Helper function: High PT argmax
        def make_leading_pair(target, base):

            return target[ak.argmax(base.pt, axis=1, keepdims=True)]

        # -- Only Leading pair --
        #leading_diele = make_leading_pair(diele,diele)
        #leading_ele   = make_leading_pair(ele_left,diele)
        #subleading_ele= make_leading_pair(ele_right,diele)

        # --OS and Leading pair --
        leading_os_diele = make_leading_pair(os_diele, os_diele)
        leading_os_ele = make_leading_pair(os_ele_left, os_diele)
        subleading_os_ele = make_leading_pair(os_ele_right, os_diele)

        # Helper function: Zmass window
        def makeZmass_window_mask(dielecs, start=60, end=120):
            mask = (dielecs.mass >= start) & (dielecs.mass <= end)
            return mask

        # -- Only Leading pair --
        #Zmass_mask = makeZmass_window_mask(leading_diele)
        #leading_Zwindow_ele = leading_ele[Zmass_mask]
        #subleading_Zwindow_ele = subleading_ele[Zmass_mask]
        #leading_Zwindow_diele = leading_diele[Zmass_mask]

        # -- OS and Leading pair --
        Zmass_mask_os = makeZmass_window_mask(leading_os_diele)
        leading_os_Zwindow_ele = leading_os_ele[Zmass_mask_os]
        subleading_os_Zwindow_ele = subleading_os_ele[Zmass_mask_os]
        leading_os_Zwindow_diele = leading_os_diele[Zmass_mask_os]

        #ele1PT  = flat_dim(leading_Zwindow_ele.pt)
        #ele1Eta = flat_dim(leading_Zwindow_ele.eta)
        #ele1Phi = flat_dim(leading_Zwindow_ele.phi)
        #ele2PT  = flat_dim(subleading_Zwindow_ele.pt)
        #ele2Eta = flat_dim(subleading_Zwindow_ele.eta)
        #ele2Phi = flat_dim(subleading_Zwindow_ele.phi)
        #Mee     = flat_dim(leading_Zwindow_diele.mass)
        #charge  = flat_dim(leading_Zwindow_diele.charge)

        os_ele1PT = flat_dim(leading_os_Zwindow_ele.pt)
        os_ele1Eta = flat_dim(leading_os_Zwindow_ele.eta)
        os_ele1Phi = flat_dim(leading_os_Zwindow_ele.phi)
        os_ele2PT = flat_dim(subleading_os_Zwindow_ele.pt)
        os_ele2Eta = flat_dim(subleading_os_Zwindow_ele.eta)
        os_ele2Phi = flat_dim(subleading_os_Zwindow_ele.phi)
        os_Mee = flat_dim(leading_os_Zwindow_diele.mass)
        os_charge = flat_dim(leading_os_Zwindow_diele.charge)

        #print("#5 Leading PT : {0}".format(len(ele1PT)))
        #print("#5 Leading os PT  {0}".format(len(os_ele1PT)))

        # --- Apply weight --- on progress #
        #if not isData:
        #	weights = processor.Weights(len(events))
        #	weights.add('pileup',pu)

        out["sumw"][dataset] += len(events)

        out["os_mass"].fill(dataset=dataset, os_mass=os_Mee)
        out["os_ele1pt"].fill(dataset=dataset, os_ele1pt=os_ele1PT)
        out["os_ele1eta"].fill(dataset=dataset, os_ele1eta=os_ele1Eta)
        out["os_ele1phi"].fill(dataset=dataset, os_ele1phi=os_ele1Phi)
        out["os_ele2pt"].fill(dataset=dataset, os_ele2pt=os_ele2PT)
        out["os_ele2eta"].fill(dataset=dataset, os_ele2eta=os_ele2Eta)
        out["os_ele2phi"].fill(dataset=dataset, os_ele2phi=os_ele2Phi)

        return out
Exemplo n.º 12
0
import numpy as np
import awkward1 as ak
import uproot4

# f = uproot4.open("~/storage/data/uproot4-big/issue-131little.root")
t = uproot4.open("/Users/chrispap/QCD/*.root:TreeMaker2/PreSelection")
#t = f["TreeMaker2/PreSelection"]

events = t.arrays([
    "HT",
    "CrossSection",
    "Tracks.fCoordinates.fX",
    "Tracks.fCoordinates.fY",
    "Tracks.fCoordinates.fZ",
    "Tracks_fromPV0",
    "Tracks_matchedToPFCandidate",
], entry_start=99000)

cut_events = events[events.HT > 1200]
HT, CrossSection, x, y, z, num_fromPV0, matched_to_candidate = ak.unzip(cut_events)

pt = np.sqrt(x**2 + y**2 + z**2)
eta = np.arcsinh(z / np.sqrt(x**2 + y**2))

track_cut = (pt > 1) & abs(eta < 2.5) & (num_fromPV0 >= 2) & matched_to_candidate
multiplicity = ak.sum(track_cut, axis=1)