def test_status_quo_for_non_monolithic_data(self, mock_gen): mock_gen.return_value = ( [ ObservationFeatures(parameters={ "x1": float(i), "x2": float(i) }, trial_index=np.int64(1)) for i in range(5) ], [1] * 5, None, {}, ) exp = get_branin_experiment_with_multi_objective(with_status_quo=True) sobol = Models.SOBOL(search_space=exp.search_space) exp.new_batch_trial(sobol.gen(5)).set_status_quo_and_optimize_power( status_quo=exp.status_quo).run() # create data where metrics vary in start and end times data = get_non_monolithic_branin_moo_data() with warnings.catch_warnings(record=True) as ws: bridge = ModelBridge( experiment=exp, data=data, model=Model(), search_space=exp.search_space, ) # just testing it doesn't error bridge.gen(5) self.assertTrue(any("start_time" in str(w.message) for w in ws)) self.assertTrue(any("end_time" in str(w.message) for w in ws)) self.assertEqual(bridge.status_quo.arm_name, "status_quo")
def test_update(self, _mock_update, _mock_gen): exp = get_experiment_for_value() exp.optimization_config = get_optimization_config_no_constraints() ss = get_search_space_for_range_values() exp.search_space = ss modelbridge = ModelBridge( search_space=ss, model=Model(), transforms=[Log], experiment=exp ) exp.new_trial(generator_run=modelbridge.gen(1)) modelbridge._set_training_data( observations_from_data( data=Data( pd.DataFrame( [ { "arm_name": "0_0", "metric_name": "m1", "mean": 3.0, "sem": 1.0, } ] ) ), experiment=exp, ), ss, ) exp.new_trial(generator_run=modelbridge.gen(1)) modelbridge.update( new_data=Data( pd.DataFrame( [{"arm_name": "1_0", "metric_name": "m1", "mean": 5.0, "sem": 0.0}] ) ), experiment=exp, ) exp.new_trial(generator_run=modelbridge.gen(1)) # Trying to update with unrecognised metric should error. with self.assertRaisesRegex(ValueError, "Unrecognised metric"): modelbridge.update( new_data=Data( pd.DataFrame( [ { "arm_name": "1_0", "metric_name": "m2", "mean": 5.0, "sem": 0.0, } ] ) ), experiment=exp, )
def test_ood_gen(self, _): # Test fit_out_of_design by returning OOD candidats exp = get_experiment_for_value() ss = SearchSpace([RangeParameter("x", ParameterType.FLOAT, 0.0, 1.0)]) modelbridge = ModelBridge( search_space=ss, model=Model(), transforms=[], experiment=exp, data=0, fit_out_of_design=True, ) obs = ObservationFeatures(parameters={"x": 3.0}) modelbridge._gen = mock.MagicMock( "ax.modelbridge.base.ModelBridge._gen", autospec=True, return_value=([obs], [2], None, {}), ) gr = modelbridge.gen(n=1) self.assertEqual(gr.arms[0].parameters, obs.parameters) # Test clamping arms by setting fit_out_of_design=False modelbridge = ModelBridge( search_space=ss, model=Model(), transforms=[], experiment=exp, data=0, fit_out_of_design=False, ) obs = ObservationFeatures(parameters={"x": 3.0}) modelbridge._gen = mock.MagicMock( "ax.modelbridge.base.ModelBridge._gen", autospec=True, return_value=([obs], [2], None, {}), ) gr = modelbridge.gen(n=1) self.assertEqual(gr.arms[0].parameters, {"x": 1.0})
def test_gen_on_experiment_with_imm_ss_and_opt_conf(self, _, __): exp = get_experiment_for_value() exp._properties[Keys.IMMUTABLE_SEARCH_SPACE_AND_OPT_CONF] = True exp.optimization_config = get_optimization_config_no_constraints() ss = get_search_space_for_range_value() modelbridge = ModelBridge(search_space=ss, model=Model(), transforms=[], experiment=exp) self.assertTrue( modelbridge._experiment_has_immutable_search_space_and_opt_config) gr = modelbridge.gen(1) self.assertIsNone(gr.optimization_config) self.assertIsNone(gr.search_space)
def testGenWithDefaults(self, _, mock_gen): exp = get_experiment_for_value() exp.optimization_config = get_optimization_config_no_constraints() ss = get_search_space_for_range_value() modelbridge = ModelBridge( search_space=ss, model=Model(), transforms=[], experiment=exp ) modelbridge.gen(1) mock_gen.assert_called_with( modelbridge, n=1, search_space=ss, fixed_features=ObservationFeatures(parameters={}), model_gen_options=None, optimization_config=OptimizationConfig( objective=Objective(metric=Metric("test_metric"), minimize=False), outcome_constraints=[], ), pending_observations={}, )
def testModelBridge(self, mock_fit, mock_gen_arms, mock_observations_from_data): # Test that on init transforms are stored and applied in the correct order transforms = [transform_1, transform_2] exp = get_experiment_for_value() ss = get_search_space_for_value() modelbridge = ModelBridge( search_space=ss, model=Model(), transforms=transforms, experiment=exp, data=0, ) self.assertFalse( modelbridge._experiment_has_immutable_search_space_and_opt_config) self.assertEqual(list(modelbridge.transforms.keys()), ["Cast", "transform_1", "transform_2"]) fit_args = mock_fit.mock_calls[0][2] self.assertTrue( fit_args["search_space"] == get_search_space_for_value(8.0)) self.assertTrue(fit_args["observation_features"] == []) self.assertTrue(fit_args["observation_data"] == []) self.assertTrue(mock_observations_from_data.called) # Test prediction on out of design features. modelbridge._predict = mock.MagicMock( "ax.modelbridge.base.ModelBridge._predict", autospec=True, side_effect=ValueError("Out of Design"), ) # This point is in design, and thus failures in predict are legitimate. with mock.patch.object(ModelBridge, "model_space", return_value=get_search_space_for_range_values): with self.assertRaises(ValueError): modelbridge.predict([get_observation2().features]) # This point is out of design, and not in training data. with self.assertRaises(ValueError): modelbridge.predict([get_observation_status_quo0().features]) # Now it's in the training data. with mock.patch.object( ModelBridge, "get_training_data", return_value=[get_observation_status_quo0()], ): # Return raw training value. self.assertEqual( modelbridge.predict([get_observation_status_quo0().features]), unwrap_observation_data([get_observation_status_quo0().data]), ) # Test that transforms are applied correctly on predict modelbridge._predict = mock.MagicMock( "ax.modelbridge.base.ModelBridge._predict", autospec=True, return_value=[get_observation2trans().data], ) modelbridge.predict([get_observation2().features]) # Observation features sent to _predict are un-transformed afterwards modelbridge._predict.assert_called_with([get_observation2().features]) # Check that _single_predict is equivalent here. modelbridge._single_predict([get_observation2().features]) # Observation features sent to _predict are un-transformed afterwards modelbridge._predict.assert_called_with([get_observation2().features]) # Test transforms applied on gen modelbridge._gen = mock.MagicMock( "ax.modelbridge.base.ModelBridge._gen", autospec=True, return_value=([get_observation1trans().features], [2], None, {}), ) oc = OptimizationConfig(objective=Objective(metric=Metric( name="test_metric"))) modelbridge._set_kwargs_to_save(model_key="TestModel", model_kwargs={}, bridge_kwargs={}) gr = modelbridge.gen( n=1, search_space=get_search_space_for_value(), optimization_config=oc, pending_observations={"a": [get_observation2().features]}, fixed_features=ObservationFeatures({"x": 5}), ) self.assertEqual(gr._model_key, "TestModel") modelbridge._gen.assert_called_with( n=1, search_space=SearchSpace( [FixedParameter("x", ParameterType.FLOAT, 8.0)]), optimization_config=oc, pending_observations={"a": [get_observation2trans().features]}, fixed_features=ObservationFeatures({"x": 36}), model_gen_options=None, ) mock_gen_arms.assert_called_with( arms_by_signature={}, observation_features=[get_observation1().features]) # Gen with no pending observations and no fixed features modelbridge.gen(n=1, search_space=get_search_space_for_value(), optimization_config=None) modelbridge._gen.assert_called_with( n=1, search_space=SearchSpace( [FixedParameter("x", ParameterType.FLOAT, 8.0)]), optimization_config=None, pending_observations={}, fixed_features=ObservationFeatures({}), model_gen_options=None, ) # Gen with multi-objective optimization config. oc2 = OptimizationConfig(objective=ScalarizedObjective( metrics=[Metric(name="test_metric"), Metric(name="test_metric_2")])) modelbridge.gen(n=1, search_space=get_search_space_for_value(), optimization_config=oc2) modelbridge._gen.assert_called_with( n=1, search_space=SearchSpace( [FixedParameter("x", ParameterType.FLOAT, 8.0)]), optimization_config=oc2, pending_observations={}, fixed_features=ObservationFeatures({}), model_gen_options=None, ) # Test transforms applied on cross_validate modelbridge._cross_validate = mock.MagicMock( "ax.modelbridge.base.ModelBridge._cross_validate", autospec=True, return_value=[get_observation1trans().data], ) cv_training_data = [get_observation2()] cv_test_points = [get_observation1().features] cv_predictions = modelbridge.cross_validate( cv_training_data=cv_training_data, cv_test_points=cv_test_points) modelbridge._cross_validate.assert_called_with( search_space=SearchSpace( [FixedParameter("x", ParameterType.FLOAT, 8.0)]), obs_feats=[get_observation2trans().features], obs_data=[get_observation2trans().data], cv_test_points=[get_observation1().features ], # untransformed after ) self.assertTrue(cv_predictions == [get_observation1().data]) # Test stored training data obs = modelbridge.get_training_data() self.assertTrue(obs == [get_observation1(), get_observation2()]) self.assertEqual(modelbridge.metric_names, {"a", "b"}) self.assertIsNone(modelbridge.status_quo) self.assertTrue( modelbridge.model_space == get_search_space_for_value()) self.assertEqual(modelbridge.training_in_design, [False, False]) with self.assertRaises(ValueError): modelbridge.training_in_design = [True, True, False] with self.assertRaises(ValueError): modelbridge.training_in_design = [True, True, False] # Test feature_importances with self.assertRaises(NotImplementedError): modelbridge.feature_importances("a") # Test transform observation features with mock.patch( "ax.modelbridge.base.ModelBridge._transform_observation_features", autospec=True, ) as mock_tr: modelbridge.transform_observation_features( [get_observation2().features]) mock_tr.assert_called_with(modelbridge, [get_observation2trans().features])