Exemplo n.º 1
0
 def testThompsonSamplerOutcomeConstraints(self):
     generator = ThompsonSampler(min_weight=0.0)
     generator.fit(
         Xs=self.multiple_metrics_Xs,
         Ys=self.multiple_metrics_Ys,
         Yvars=self.multiple_metrics_Yvars,
         parameter_values=self.parameter_values,
         outcome_names=self.outcome_names,
     )
     arms, weights, _ = generator.gen(
         n=4,
         parameter_values=self.parameter_values,
         objective_weights=np.array([1, 0]),
         outcome_constraints=(
             # pass in multiples of the same constraint
             # to ensure that shapes are correct for multiple constraints
             np.array([[0, 1], [0, 1], [0, 1]]),
             np.array([[1], [1], [1]]),
         ),
     )
     self.assertEqual(arms, [[3, 3], [4, 4], [2, 2], [1, 1]])
     for weight, expected_weight in zip(
         weights, [4 * i for i in [0.4, 0.4, 0.15, 0.05]]
     ):
         self.assertAlmostEqual(weight, expected_weight, delta=0.1)
Exemplo n.º 2
0
    def testThompsonSamplerPredict(self):
        generator = ThompsonSampler(min_weight=0.0)
        generator.fit(
            Xs=self.Xs,
            Ys=self.Ys,
            Yvars=self.Yvars,
            parameter_values=self.parameter_values,
            outcome_names=self.outcome_names,
        )
        f, cov = generator.predict([[1, 1], [3, 3]])
        self.assertTrue(np.array_equal(f, np.array([[1], [3]])))
        self.assertTrue(np.array_equal(cov, np.ones((2, 1, 1))))

        with self.assertRaises(ValueError):
            generator.predict([[1, 2]])
Exemplo n.º 3
0
 def testThompsonSamplerInfeasible(self):
     generator = ThompsonSampler(min_weight=0.9)
     generator.fit(
         Xs=self.Xs,
         Ys=self.Ys,
         Yvars=self.Yvars,
         parameter_values=self.parameter_values,
         outcome_names=self.outcome_names,
     )
     with self.assertRaises(ModelError):
         generator.gen(
             n=3,
             parameter_values=self.parameter_values,
             objective_weights=np.ones(1),
         )
Exemplo n.º 4
0
 def testThompsonSamplerUniformWeights(self):
     generator = ThompsonSampler(min_weight=0.0, uniform_weights=True)
     generator.fit(
         Xs=self.Xs,
         Ys=self.Ys,
         Yvars=self.Yvars,
         parameter_values=self.parameter_values,
         outcome_names=self.outcome_names,
     )
     arms, weights, _ = generator.gen(
         n=3, parameter_values=self.parameter_values, objective_weights=np.ones(1)
     )
     self.assertEqual(arms, [[4, 4], [3, 3], [2, 2]])
     for weight, expected_weight in zip(weights, [1.0, 1.0, 1.0]):
         self.assertAlmostEqual(weight, expected_weight, 1)
Exemplo n.º 5
0
 def testThompsonSamplerMinWeight(self):
     generator = ThompsonSampler(min_weight=0.01)
     generator.fit(
         Xs=self.Xs,
         Ys=self.Ys,
         Yvars=self.Yvars,
         parameter_values=self.parameter_values,
         outcome_names=self.outcome_names,
     )
     arms, weights = generator.gen(
         n=5, parameter_values=self.parameter_values, objective_weights=np.ones(1)
     )
     self.assertEqual(arms, [[4, 4], [3, 3], [2, 2]])
     for weight, expected_weight in zip(weights, [0.725, 0.225, 0.05]):
         self.assertAlmostEqual(weight, expected_weight, 1)
Exemplo n.º 6
0
 def testThompsonSamplerOutcomeConstraintsInfeasible(self):
     generator = ThompsonSampler(min_weight=0.0)
     generator.fit(
         Xs=self.multiple_metrics_Xs,
         Ys=self.multiple_metrics_Ys,
         Yvars=self.multiple_metrics_Yvars,
         parameter_values=self.parameter_values,
         outcome_names=self.outcome_names,
     )
     with self.assertRaises(ValueError):
         generator.gen(
             n=3,
             parameter_values=self.parameter_values,
             objective_weights=np.ones(2),
             outcome_constraints=(np.array([[0, 1]]), np.array([[-10]])),
         )
Exemplo n.º 7
0
 def testThompsonSampler(self):
     generator = ThompsonSampler(min_weight=0.0)
     generator.fit(
         Xs=self.Xs,
         Ys=self.Ys,
         Yvars=self.Yvars,
         parameter_values=self.parameter_values,
         outcome_names=self.outcome_names,
     )
     arms, weights, gen_metadata = generator.gen(
         n=3, parameter_values=self.parameter_values, objective_weights=np.ones(1)
     )
     self.assertEqual(arms, [[4, 4], [3, 3], [2, 2]])
     for weight, expected_weight in zip(
         weights, [3 * i for i in [0.725, 0.225, 0.05]]
     ):
         self.assertAlmostEqual(weight, expected_weight, 1)
     self.assertEqual(len(gen_metadata["arms_to_weights"]), 4)
Exemplo n.º 8
0
    def testThompsonSamplerValidation(self):
        generator = ThompsonSampler(min_weight=0.01)

        # all Xs are not the same
        with self.assertRaises(ValueError):
            generator.fit(
                Xs=[[[1, 1], [2, 2], [3, 3], [4, 4]], [[1, 1], [2, 2], [4, 4]]],
                Ys=self.Ys,
                Yvars=self.Yvars,
                parameter_values=self.parameter_values,
                outcome_names=self.outcome_names,
            )

        # multiple observations per parameterization
        with self.assertRaises(ValueError):
            generator.fit(
                Xs=[[[1, 1], [2, 2], [2, 2]]],
                Ys=self.Ys,
                Yvars=self.Yvars,
                parameter_values=self.parameter_values,
                outcome_names=self.outcome_names,
            )

        # these are not the same observations, so should not error
        generator.fit(
            Xs=[[[1, 1], [2.0, 2], [2, 2]]],
            Ys=self.Ys,
            Yvars=self.Yvars,
            parameter_values=self.parameter_values,
            outcome_names=self.outcome_names,
        )

        # requires objective weights
        with self.assertRaises(ValueError):
            generator.gen(5, self.parameter_values, objective_weights=None)