Exemplo n.º 1
0
def get_cluster():
    ws = get_workspace()
    aks_name = AKS_NAME
    cts = ws.compute_targets
    if aks_name in cts and cts[aks_name].type == 'AKS':
        print('Found existing AKS cluster, will use it!')
        aks_target = cts[aks_name]
        return aks_target
    else:
        print('AKS cluster not found, sorry')
        return None
Exemplo n.º 2
0
def attach_cluster():
    # Set the resource group that contains the AKS cluster and the cluster name
    resource_group = RESOURCE_GROUP
    cluster_name = AKS_CLUSTER_NAME

    # Attach the cluster to your workgroup. If the cluster has less than 12 virtual CPUs, use the following instead:
    attach_config = AksCompute.attach_configuration(
        resource_group=resource_group,
        cluster_name=cluster_name,
        cluster_purpose=AksCompute.ClusterPurpose.DEV_TEST)
    ws = get_workspace()
    aks_target = ComputeTarget.attach(ws, AKS_NAME, attach_config)
    return aks_target
Exemplo n.º 3
0
def deploy_image():
    ws = get_workspace()
    azure_image = get_image()
    aci_config = AciWebservice.deploy_configuration(cpu_cores=1,
                                                    memory_gb=1,
                                                    tags={'method': 'sklearn'},
                                                    description='Worst model',
                                                    location=LOCATION)
    webservice = Webservice.deploy_from_image(image=azure_image,
                                              workspace=ws,
                                              name=MODEL_NAME,
                                              deployment_config=aci_config)
    webservice.wait_for_deployment(show_output=True)
Exemplo n.º 4
0
def create_cluster():
    ws = get_workspace()
    # Use the default configuration (can also provide parameters to customize)
    prov_config = AksCompute.provisioning_configuration()
    aks_name = AKS_CLUSTER_NAME

    # Create the cluster
    aks_target = ComputeTarget.create(workspace=ws,
                                      name=aks_name,
                                      provisioning_configuration=prov_config)

    aks_target.wait_for_completion(show_output=True)

    print(aks_target.provisioning_state)
    print(aks_target.provisioning_errors)

    return aks_target
Exemplo n.º 5
0
def deploy_image():
    ws = get_workspace()
    azure_image = get_image()

    # Set the web service configuration (using default here with app insights)
    aks_config = AksWebservice.deploy_configuration(enable_app_insights=True)

    # Unique service name
    service_name = AKS_NAME

    aks_target = get_cluster()

    # Webservice creation using single command
    aks_service = Webservice.deploy_from_image(workspace=ws,
                                               name=service_name,
                                               deployment_config=aks_config,
                                               image=azure_image,
                                               deployment_target=aks_target)

    aks_service.wait_for_deployment(show_output=True)
Exemplo n.º 6
0
def get_service():
    ws = get_workspace()
    services = Webservice.list(workspace=ws, compute_type='AKS')
    return services[0]
Exemplo n.º 7
0
def model_register():
    ws = get_workspace()
    model = Model.register(workspace=ws,
                           model_path="../artifacts/worst.pickle",
                           model_name="worst-model")
    return model
Exemplo n.º 8
0
def get_model_path():
    ws = get_workspace()
    model_path = Model.get_model_path('worst-model', _workspace=ws)
    return model_path
Exemplo n.º 9
0
def get_experiment():
    ws = get_workspace()
    experiment_name = EXPERIMENT_NAME
    exp = ws.experiments[experiment_name]
    return exp
Exemplo n.º 10
0
def get_model(runId=get_last_run_id(), model_save_path=MODEL_PATH):
    ws = get_workspace()
    mlflow.set_tracking_uri(ws.get_mlflow_tracking_uri())
    model_uri = get_model_uri(runId, model_save_path)
    model = mlflow.sklearn.load_model(model_uri)
    return model
Exemplo n.º 11
0
def get_model_uri(runId=get_last_run_id(), model_save_path=MODEL_PATH):
    ws = get_workspace()
    mlflow.set_tracking_uri(ws.get_mlflow_tracking_uri())
    model_uri = 'runs:/{}/{}'.format(runId, model_save_path)
    return model_uri