def create_model(num_classes, device):
    # https://download.pytorch.org/models/vgg16-397923af.pth
    # 如果使用mobilenetv2的话就下载对应预训练权重并注释下面三行,接着把mobilenetv2模型对应的两行代码注释取消掉
    vgg_feature = vgg(model_name="vgg16",
                      weights_path="./backbone/vgg16.pth").features
    backbone = torch.nn.Sequential(*list(
        vgg_feature._modules.values())[:-1])  # 删除feature中最后的maxpool层
    backbone.out_channels = 512

    # https://download.pytorch.org/models/mobilenet_v2-b0353104.pth
    # backbone = MobileNetV2(weights_path="./backbone/mobilenet_v2.pth").features
    # backbone.out_channels = 1280  # 设置对应backbone输出特征矩阵的channels

    anchor_generator = AnchorsGenerator(sizes=((32, 64, 128, 256, 512), ),
                                        aspect_ratios=((0.5, 1.0, 2.0), ))

    roi_pooler = torchvision.ops.MultiScaleRoIAlign(
        featmap_names=['0'],  # 在哪些特征层上进行roi pooling
        output_size=[7, 7],  # roi_pooling输出特征矩阵尺寸
        sampling_ratio=2)  # 采样率

    model = FasterRCNN(backbone=backbone,
                       num_classes=num_classes,
                       rpn_anchor_generator=anchor_generator,
                       box_roi_pool=roi_pooler)

    return model
def create_model(num_classes):
    vgg_feature = vgg(model_name="vgg16").features
    backbone = torch.nn.Sequential(*list(
        vgg_feature._modules.values())[:-1])  # 删除feature中最后的maxpool层
    backbone.out_channels = 512

    anchor_generator = AnchorsGenerator(sizes=((32, 64, 128, 256, 512), ),
                                        aspect_ratios=((0.5, 1.0, 2.0), ))

    roi_pooler = torchvision.ops.MultiScaleRoIAlign(
        featmap_names=['0'],  # 在哪些特征层上进行roi pooling
        output_size=[7, 7],  # roi_pooling输出特征矩阵尺寸
        sampling_ratio=2)  # 采样率

    model = FasterRCNN(backbone=backbone,
                       num_classes=num_classes,
                       rpn_anchor_generator=anchor_generator,
                       box_roi_pool=roi_pooler)

    return model
Exemplo n.º 3
0
def build_ssd(phase, size=300, num_classes=5):
    if phase != "test" and phase != "train":
        print("ERROR: Phase: " + phase + " not recognized")
        return
    if size != 300:
        print("ERROR: You specified size " + repr(size) + ". However, " +
              "currently only SSD300 (size=300) is supported!")
        return

    base_, extras_, head_ = multibox(vgg(base[str(size)], 3),
                                     add_extras(extras[str(size)], 1024),
                                     mbox[str(size)], num_classes)

    # print("-----------")
    # for i,v in enumerate(base_):
    #     print(i,v)
    # print("-----------")
    # for i,e in enumerate(extras_):
    #     print(i,e)
    # print("-----------")
    # for i,h in enumerate(head_):
    #     print(i,h)

    return SSD(phase, size, base_, extras_, head_, num_classes)
Exemplo n.º 4
0
def main(parser_data):
    device = torch.device(
        parser_data.device if torch.cuda.is_available() else "cpu")
    print("Using {} device training.".format(device.type))

    data_transform = {"val": transforms.Compose([transforms.ToTensor()])}

    # read class_indict
    label_json_path = './coco80_indices.json'
    assert os.path.exists(
        label_json_path), "json file {} dose not exist.".format(
            label_json_path)
    json_file = open(label_json_path, 'r')
    category_index = json.load(json_file)

    coco_root = parser_data.data_path

    # 注意这里的collate_fn是自定义的,因为读取的数据包括image和targets,不能直接使用默认的方法合成batch
    batch_size = parser_data.batch_size
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0,
              8])  # number of workers
    print('Using %g dataloader workers' % nw)

    # load validation data set
    val_dataset = CocoDetection(coco_root, "val", data_transform["val"])
    val_dataset_loader = torch.utils.data.DataLoader(
        val_dataset,
        batch_size=batch_size,
        shuffle=False,
        pin_memory=True,
        num_workers=nw,
        collate_fn=val_dataset.collate_fn)

    # create model
    vgg_feature = vgg(model_name="vgg16",
                      weights_path="./backbone/vgg16.pth").features
    backbone = torch.nn.Sequential(*list(
        vgg_feature._modules.values())[:-1])  # 删除feature中最后的maxpool层
    backbone.out_channels = 512

    anchor_generator = AnchorsGenerator(sizes=((32, 64, 128, 256, 512), ),
                                        aspect_ratios=((0.5, 1.0, 2.0), ))

    roi_pooler = torchvision.ops.MultiScaleRoIAlign(
        featmap_names=['0'],  # 在哪些特征层上进行roi pooling
        output_size=[7, 7],  # roi_pooling输出特征矩阵尺寸
        sampling_ratio=2)  # 采样率

    # num_classes equal 80 + background classes
    model = FasterRCNN(backbone=backbone,
                       num_classes=parser_data.num_classes + 1,
                       rpn_anchor_generator=anchor_generator,
                       box_roi_pool=roi_pooler)

    # 载入你自己训练好的模型权重
    weights_path = parser_data.weights
    assert os.path.exists(weights_path), "not found {} file.".format(
        weights_path)
    weights_dict = torch.load(weights_path, map_location=device)
    model.load_state_dict(weights_dict['model'])
    # print(model)

    model.to(device)

    # evaluate on the val dataset
    cpu_device = torch.device("cpu")
    coco91to80 = val_dataset.coco91to80
    coco80to91 = dict([(str(v), k) for k, v in coco91to80.items()])
    results = []

    model.eval()
    with torch.no_grad():
        for image, targets in tqdm(val_dataset_loader, desc="validation..."):
            # 将图片传入指定设备device
            image = list(img.to(device) for img in image)

            # inference
            outputs = model(image)

            outputs = [{k: v.to(cpu_device)
                        for k, v in t.items()} for t in outputs]

            # 遍历每张图像的预测结果
            for target, output in zip(targets, outputs):
                if len(output) == 0:
                    continue

                img_id = int(target["image_id"])
                per_image_boxes = output["boxes"]
                # 对于coco_eval, 需要的每个box的数据格式为[x_min, y_min, w, h]
                # 而我们预测的box格式是[x_min, y_min, x_max, y_max],所以需要转下格式
                per_image_boxes[:, 2:] -= per_image_boxes[:, :2]
                per_image_classes = output["labels"]
                per_image_scores = output["scores"]

                # 遍历每个目标的信息
                for object_score, object_class, object_box in zip(
                        per_image_scores, per_image_classes, per_image_boxes):
                    object_score = float(object_score)
                    # 要将类别信息还原回coco91中
                    coco80_class = int(object_class)
                    coco91_class = int(coco80to91[str(coco80_class)])
                    # We recommend rounding coordinates to the nearest tenth of a pixel
                    # to reduce resulting JSON file size.
                    object_box = [round(b, 2) for b in object_box.tolist()]

                    res = {
                        "image_id": img_id,
                        "category_id": coco91_class,
                        "bbox": object_box,
                        "score": round(object_score, 3)
                    }
                    results.append(res)

    # accumulate predictions from all images
    # write predict results into json file
    json_str = json.dumps(results, indent=4)
    with open('predict_tmp.json', 'w') as json_file:
        json_file.write(json_str)

    # accumulate predictions from all images
    coco_true = val_dataset.coco
    coco_pre = coco_true.loadRes('predict_tmp.json')

    coco_evaluator = COCOeval(cocoGt=coco_true,
                              cocoDt=coco_pre,
                              iouType="bbox")
    coco_evaluator.evaluate()
    coco_evaluator.accumulate()
    coco_evaluator.summarize()

    # calculate COCO info for all classes
    coco_stats, print_coco = summarize(coco_evaluator)

    # calculate voc info for every classes(IoU=0.5)
    voc_map_info_list = []
    for i in range(len(category_index)):
        stats, _ = summarize(coco_evaluator, catId=i)
        voc_map_info_list.append(" {:15}: {}".format(
            category_index[str(i + 1)], stats[1]))

    print_voc = "\n".join(voc_map_info_list)
    print(print_voc)

    # 将验证结果保存至txt文件中
    with open("record_mAP.txt", "w") as f:
        record_lines = [
            "COCO results:", print_coco, "", "mAP(IoU=0.5) for each category:",
            print_voc
        ]
        f.write("\n".join(record_lines))