Exemplo n.º 1
0
def get_branch_data():
    branch_id = request.args.get('branch_id')

    db = DatabaseHelper()
    data = db.get_branch(branch_id)

    return api_helper.return_response(data)
Exemplo n.º 2
0
    def read_admission(self, channel, year, file_location):
        df = pd.read_excel(file_location,
                           converters={
                               'เลขที่ใบสมัคร': str,
                               'รหัสสถานศึกษา': str
                           })

        try:
            df = df.loc[1:, [
                'เลขที่ใบสมัคร', 'คำนำหน้านาม(ไทย)', 'ชื่อ(ไทย)',
                'นามสกุล(ไทย)', 'GPAX', 'รหัสสถานศึกษา', 'สาขาวิชาที่สมัคร',
                'ได้เข้าศึกษา'
            ]]
            df.rename(columns={
                'เลขที่ใบสมัคร': 'application_no',
                'คำนำหน้านาม(ไทย)': 'gender',
                'ชื่อ(ไทย)': 'firstname',
                'นามสกุล(ไทย)': 'lastname',
                'รหัสสถานศึกษา': 'school_id',
                'สาขาวิชาที่สมัคร': 'branch',
                'ได้เข้าศึกษา': 'decision'
            },
                      inplace=True)
        except Exception as e:
            print(e)
            return inner_res_helper.make_inner_response(
                False,
                "Please check your file or table head " + str(e.args[0]),
                "Please check your file or table head " + str(e.args[0]))
        # admission table
        admission_table = df.loc[:, [
            'application_no', 'firstname', 'lastname', 'gender', 'decision'
        ]]
        admission_table['admission_year'] = year
        admission_table['upload_date'] = datetime.now().timestamp()
        admission_table.loc[admission_table['gender'] == 'นาย',
                            ['gender']] = 'M'
        admission_table.loc[admission_table['gender'].str.contains('นาง'),
                            ['gender']] = 'F'
        admission_table.loc[admission_table['decision'] == 'ไม่',
                            ['decision']] = -1
        admission_table.loc[admission_table['decision'] == 'ใช่',
                            ['decision']] = 1
        admission_table['decision'].fillna(-1, inplace=True)

        # admission in branch table
        admission_branch = df.loc[:, ['application_no', 'branch']]

        # get branch data from database
        db = DatabaseHelper()
        branch = db.get_branch()
        branch = branch['value']

        for i in branch:
            branch_name = i['branch_name']
            if admission_branch.loc[admission_branch['branch'].str.
                                    contains(branch_name.split()[0]),
                                    ['branch']].shape[0] > 0:
                admission_branch.loc[admission_branch['branch'].str.
                                     contains(branch_name.split()[0]),
                                     ['branch']] = str(i['branch_id'])

        admission_branch.rename(columns={'branch': 'branch_id'}, inplace=True)

        # admission from table
        admission_from = df.loc[:, ['application_no']]
        admission_from['channel_id'] = channel

        # admission studied
        admission_studied = df.loc[:, ['application_no', 'GPAX', 'school_id']]
        # admission_studied['school_id'] = '1010335002'

        # make json data to send to database helper class
        out_function_data = {
            'admission_table': admission_table.to_json(orient='index'),
            'admission_branch': admission_branch.to_json(orient='index'),
            'admission_from': admission_from.to_json(orient='index'),
            'admission_studied': admission_studied.to_json(orient='index')
        }
        return inner_res_helper.make_inner_response(
            True, "Data for insert in to database", out_function_data)
Exemplo n.º 3
0
    def read_alumni_personal_data(self, data: pd.DataFrame, personal_header,
                                  graduated_year):

        try:
            data = data.loc[1:, :]
            data.drop_duplicates(subset=personal_header[0],
                                 keep=False,
                                 inplace=True)

            data.rename(columns={
                personal_header[0]: 'alumni_id',
                personal_header[1]: 'gpax',
                personal_header[2]: 'branch_name',
                personal_header[3]: 'company',
                personal_header[4]: 'status',
                personal_header[5]: 'job_description',
                personal_header[6]: 'salary',
                personal_header[7]: 'institution',
                personal_header[9]: 'branch',
                personal_header[10]: 'apprentice',
                personal_header[8]: 'faculty'
            },
                        inplace=True)

            data.astype({'alumni_id': str})

            # alumni table
            alumni = data.loc[:, ['alumni_id', 'gpax']]
            alumni['graduated_year'] = graduated_year
            alumni.loc[alumni['gpax'] == 'ไม่ระบุ', ['gpax']] = -1
            alumni.astype({'gpax': float})

            # alumni graduated table
            db = DatabaseHelper()
            branch = db.get_branch()
            branch = branch['value']
            alumni_graduated = data.loc[:, ['alumni_id', 'branch_name']]

            for i in branch:
                branch_name = i['branch_name']
                if \
                        alumni_graduated.loc[
                            alumni_graduated['branch_name'].str.contains(branch_name.split()[0]), [
                                'branch_name']].shape[
                            0] > 0:
                    alumni_graduated.loc[alumni_graduated['branch_name'].str.
                                         contains(branch_name.split()[0]),
                                         ['branch_name']] = str(i['branch_id'])

            alumni_graduated.rename(columns={'branch_name': 'branch_id'},
                                    inplace=True)

            # alumni apprentice table
            apprentice = db.get_apprentice_status_list()
            apprentice = apprentice['value']

            apprentice_table = data.loc[:, ['alumni_id', 'apprentice']]

            for i in apprentice:
                title = i['status_title']
                title_id = i['status_id']
                if apprentice_table.loc[
                        apprentice_table['apprentice'].str.contains(title),
                    ['apprentice']].shape[0] > 0:
                    apprentice_table.loc[
                        apprentice_table['apprentice'].str.contains(title),
                        ['apprentice']] = str(title_id)

            apprentice_table.rename(columns={'apprentice': 'apprentice_id'},
                                    inplace=True)

            # alumni working table
            working_status = db.get_working_status_list()
            working_status = working_status['value']

            working_table = data.loc[:, [
                'alumni_id', 'status', 'company', 'institution',
                'job_description', 'faculty', 'branch', 'salary'
            ]]

            for i in working_status:
                title = i['status_title']
                title_id = i['status_id']
                if working_table.loc[working_table['status'].str.
                                     contains(title), ['status']].shape[0] > 0:
                    working_table.loc[
                        working_table['status'].str.contains(title),
                        ['status']] = str(title_id)

            working_table.rename(columns={'status': 'status_id'}, inplace=True)

            working_table.loc[working_table['salary'].str.contains("ไม่ระบุ"),
                              ['salary']] = np.nan
            working_table.loc[working_table['salary'] == "",
                              ['salary']] = np.nan
            working_table['salary'] = working_table['salary'].astype(float)

            working_table.loc[working_table['company'] == "",
                              ['company']] = None
            working_table.loc[working_table['institution'] == "",
                              ['institution']] = None
            working_table.loc[working_table['job_description'] == "",
                              ['job_description']] = None
            working_table.loc[working_table['faculty'] == "",
                              ['faculty']] = None
            working_table.loc[working_table['branch'] == "", ['branch']] = None

            out_function_data = {
                'alumni': alumni.to_json(orient='index'),
                'alumni_graduated': alumni_graduated.to_json(orient='index'),
                'working_table': working_table.to_json(orient='index'),
                'apprentice_table': apprentice_table.to_json(orient='index')
            }
            return inner_res_helper.make_inner_response(
                True, "Data for insert to data base", out_function_data)
        except Exception as e:
            print(e)
            return inner_res_helper.make_inner_response(
                False, "Error", "Having problem when prepare data.")
Exemplo n.º 4
0
    def read_new_student_file(self, file_location):

        df = pd.read_excel(file_location,
                           converters={
                               'STUDENT_CODE': str,
                               'APPLICATION_NO': str,
                               'INSTITUTE_CODE': str
                           })

        if df is None:
            return inner_res_helper.make_inner_response(
                response=False,
                message="Cannot read file",
                value="Cannot read file")

        try:
            df.rename(columns={
                'STUDENT_CODE': 'student_id',
                'APPLICATION_NO': 'application_no',
                'FIRSTNAME_TH': 'firstname',
                'LASTNAME_TH': 'lastname',
                'SEX_NAME': 'gender',
                'PROGRAM_PROJECT_NAME_TH': 'branch_name',
                'INSTITUTE_CODE': 'school_id',
                'OLDGPA': 'old_gpa'
            },
                      inplace=True)
        except Exception as e:
            print(e)
            return inner_res_helper.make_inner_response(
                False,
                "Please check your file or table head " + str(e.args[0]),
                "Please check your file or table head " + str(e.args[0]))

        # change gender from full text to M or F
        df.loc[df['gender'] == 'ชาย', ['gender']] = 'M'
        df.loc[df['gender'] == 'หญิง', ['gender']] = 'F'

        # get branch data
        db = DatabaseHelper()
        branch = db.get_branch()
        branch = branch['value']

        # change branch name to branch id
        for i in branch:
            branch_name = i['branch_name']
            if df.loc[df['branch_name'].str.contains(branch_name.split()[0]),
                      ['branch_name']].shape[0] > 0:
                df.loc[df['branch_name'].str.contains(branch_name.split()[0]),
                       ['branch_name']] = str(i['branch_id'])

        # data frame for student table
        student = df.loc[:, ['student_id', 'firstname', 'lastname', 'gender']]

        # data frame for entrance table
        entrance = df.loc[:, ['student_id', 'application_no']]

        # data frame for graduated
        graduated = df.loc[:, ['student_id', 'school_id', 'old_gpa']]
        graduated.rename(columns={'old_gpa': 'gpax'}, inplace=True)
        graduated.fillna("0000000000", inplace=True)

        # data frame for has status table
        has_status = df.loc[:, ['student_id']]
        has_status['status_id'] = 1

        # data frame for study in
        study_in = df.loc[:, ['student_id', 'branch_name']]
        study_in.rename(columns={'branch_name': 'branch_id'}, inplace=True)

        out_function_data = {
            'student': student.to_json(orient='index'),
            'entrance': entrance.to_json(orient='index'),
            'graduated': graduated.to_json(orient='index'),
            'has_status': has_status.to_json(orient='index'),
            'study_in': study_in.to_json(orient='index')
        }

        return inner_res_helper.make_inner_response(
            True, "Data for insert in to database", out_function_data)
Exemplo n.º 5
0
    def analyze_student_status(self, year=None):
        connect = DatabaseHelper()
        data = connect.get_all_admission(year)
        value = {}
        if data['value']:

            df = pd.DataFrame(data['value'])
            df = df[df['admission_year'] == int(year)]
            if not df.empty:
                status_data = analyze_helper.set_fullname(
                    connect.get_status_list())
                status_dic = analyze_helper.set_dict(status_data.index,
                                                     status_data.status_title)
                channel_data = analyze_helper.set_fullname(
                    connect.get_admission_channel())
                channel_sample = self.split_channel(channel_data)
                dupli_channel = channel_sample.channel_name.duplicated(
                    keep=False)
                channel_sample.loc[dupli_channel, 'channel_name'] = channel_sample.loc[dupli_channel, 'channel_name'] + ' (' + \
                                                                channel_sample['channel_round'] + ')'
                channel_dict = analyze_helper.set_dict(
                    channel_sample.index, channel_sample.channel_name)
                branch = connect.get_branch()
                branch_data = analyze_helper.set_branch(branch['value'])
                branch_dict = analyze_helper.set_dict(branch_data.index,
                                                      branch_data.branch_name)

                group_brance = df.groupby(['channel_id', 'branch_id'
                                           ]).size().unstack(fill_value=0)
                group_brance = analyze_helper.check_list_column(
                    branch_data.index, group_brance)
                group_brance = analyze_helper.check_list(
                    channel_data.index, group_brance)
                group_brance = analyze_helper.set_fullname_column(
                    branch_dict, group_brance)
                group_brance = analyze_helper.set_fullname_index(
                    channel_dict, group_brance)
                branch_list = group_brance.columns.tolist()
                channel_id_list = channel_data.index.tolist()

                table_count = []
                for c_id in channel_id_list:
                    by_channel = {}
                    data = df[df['channel_id'] == c_id]
                    if not data.empty:
                        count = len(data)
                        max_data = data.branch_id.value_counts().max()
                        min_data = data.branch_id.value_counts().min()
                    else:
                        count = 0
                        max_data = 0
                        min_data = 0
                    by_channel['channel'] = channel_dict[c_id]
                    by_channel['count'] = str(count)
                    by_channel['max_data'] = str(max_data)
                    by_channel['min_data'] = str(min_data)
                    table_count.append(by_channel)

                all_student = len(df)
                channel_count = df.channel_id.value_counts()

                group = df[(df['status_id'] == 2) | (df['status_id'] == 3)]

                group = group.groupby(['channel_id', 'status_id'
                                       ]).size().unstack(fill_value=0)
                if group.empty:
                    group = pd.DataFrame(0,
                                         index=np.arange(len(channel_count)),
                                         columns=[2, 3])
                    group['channel'] = channel_count.index
                    group.set_index('channel', inplace=True)
                group = group.rename(columns={2: "probation", 3: "drop"})

                list_name = group.columns.tolist()
                group = pd.merge(channel_count,
                                 group,
                                 left_index=True,
                                 right_index=True,
                                 how='inner')
                group.rename(columns={group.columns[0]: "all"}, inplace=True)
                all_admission = group['all'].sum()
                for name in list_name:
                    group['per_Type_' + str(name)] = group.apply(
                        lambda row: (row[name] / row['all']) * 100, axis=1)
                    group['per_Stu_' + str(name)] = group.apply(
                        lambda row: (row[name] / all_student) * 100, axis=1)

                group['per_all_student'] = (group['all'] / all_admission) * 100
                group = group.round(2).sort_index()

                group_check_index = analyze_helper.check_list(
                    channel_data.index, group)
                group_fullname = analyze_helper.set_fullname_index(
                    channel_dict, group_check_index)
                value = {
                    'branch': branch_list,
                    'count_by_brance': group_brance.to_dict('index'),
                    'all_student': str(all_student),
                    'table': group_check_index.to_dict('index'),
                    'table_count': table_count,
                }
                response = True
                message = "Don't have Data"
            else:
                value = {}
                response = False
                message = "Don't have Data"

        else:
            value = {}
            response = False
            message = "Don't have Data"
        return inner_res_helper.make_inner_response(response=response,
                                                    message=message,
                                                    value=value)
Exemplo n.º 6
0
    def analyze_admission_admin(self, year=None):
        connect = DatabaseHelper()
        data = connect.get_all_admission_admin(year)
        value = {}
        if data['value']:
            df = pd.DataFrame(data['value'])
            df = df[df['admission_year'] == int(year)]
            if not df.empty:
                branch = connect.get_branch()
                branch_data = analyze_helper.set_branch(branch['value'])
                branch_dict = analyze_helper.set_dict(branch_data.index,
                                                      branch_data.branch_name)
                channel_data = analyze_helper.set_fullname(
                    connect.get_admission_channel())
                channel_sample = self.split_channel(channel_data)

                data_split = self.split_channel(df)
                channel_round = channel_sample.channel_round.drop_duplicates(
                ).to_list()
                analyze_by_round = []
                for i in channel_round:
                    analyze_by_round_s = {}
                    data_in_round = data_split[data_split['channel_round'] ==
                                               i]

                    if data_in_round.empty:
                        data_channel_sample = channel_sample[
                            channel_sample['channel_round'] == i]
                        data_group = data_channel_sample.groupby(
                            ['channel_round',
                             'channel_name']).size().unstack(fill_value=0)
                        data_group.iloc[:] = 0
                        data_group.reset_index(inplace=True)
                        name = data_group.iloc[0, 0]
                        data_group = data_group.drop(columns=['channel_round'])
                        analyze_by_round_s['name'] = name
                        analyze_by_round_s['analyze'] = data_group.to_dict(
                            'index')

                    else:
                        data_group = data_in_round.groupby(
                            ['channel_round',
                             'channel_name']).size().unstack(fill_value=0)
                        channel_sample_selector = (channel_sample[
                            channel_sample['channel_round'] == i])
                        data_group_check_channel = analyze_helper.check_list_column(
                            channel_sample_selector.channel_name, data_group)
                        data_group_check_channel.reset_index(inplace=True)
                        name = data_group_check_channel.iloc[0, 0]
                        data_group_check_channel = data_group_check_channel.drop(
                            columns=['channel_round'])

                        analyze_by_round_s['name'] = name
                        analyze_by_round_s[
                            'analyze'] = data_group_check_channel.to_dict(
                                'index')
                    analyze_by_round.append(analyze_by_round_s)
                value = {'analyze_by_round': analyze_by_round}
                response = True
                message = "Analyze Successfully"
            else:
                value = {}
                response = False
                message = "Don't have Data"
        else:
            value = {}
            response = False
            message = "Don't have Data"
        return inner_res_helper.make_inner_response(response=response,
                                                    message=message,
                                                    value=value)
Exemplo n.º 7
0
    def analyze_alumni_work(self, year=None):
        connect = DatabaseHelper()
        data = connect.get_all_alumni(year)

        if data['value']:
            df = pd.DataFrame(data['value'])
            df['graduated_gpax'] = df['graduated_gpax'].astype(int)
            branch = connect.get_branch()
            branch_data = analyze_helper.set_branch(branch['value'])
            status_working = analyze_helper.set_fullname(
                connect.get_working_status_list())
            status_apprentice = analyze_helper.set_fullname(
                connect.get_apprentice_status_list())
            branch_dic = analyze_helper.set_dict(branch_data.index,
                                                 branch_data.branch_name)
            status_working_dic = analyze_helper.set_dict(
                status_working.index, status_working.status_title)
            status_apprentice_dic = analyze_helper.set_dict(
                status_apprentice.index, status_apprentice.status_title)

            df_brach = df.groupby('branch_id').size()
            df_branch_finish = analyze_helper.check_list(
                branch_data.index.values, df_brach)

            count_by_status = df.groupby('work_id').size()
            count_by_status_finish = analyze_helper.check_list(
                status_working.index.values, count_by_status)

            count_by_training = df.groupby('apprentice_id').size()
            count_by_training_finish = analyze_helper.check_list(
                status_apprentice.index.values, count_by_training)

            df_gpax = df[df['graduated_gpax'] != -1]
            gpax_by_branch = df_gpax.groupby(
                'branch_id')['graduated_gpax'].mean()
            gpax_by_branch_2decimal = gpax_by_branch.round(2)
            gpax_by_branch_finish = analyze_helper.check_list(
                branch_data.index.values, gpax_by_branch_2decimal)

            list_salary = {
                1: 'น้อยกว่า 10,000',
                2: '10,000-19,999',
                3: '20,000-30,000',
                4: 'มากกว่า 30,000'
            }
            salary_branch_trining = []
            list_analze = {}
            df_salary = df[df['salary'].notna()]
            df_salary = df_salary.copy()
            df_salary['salary'] = df_salary['salary'].astype(int)

            # df_salary.loc[:, ['salary']] =df_salary['salary'].astype(int)
            salary_all_branch_trining = self.__salary_branch_training(
                df_salary[['salary', 'apprentice_id']])
            salary_all_branch_trining_check_index = analyze_helper.check_list_column(
                status_apprentice.index.values, salary_all_branch_trining)
            salary_all_branch_trining_check_column = analyze_helper.check_list(
                list_salary.keys(), salary_all_branch_trining_check_index)
            salary_all_branch_trining_index = analyze_helper.set_fullname_column(
                status_apprentice_dic, salary_all_branch_trining_check_column)
            salary_all_branch_trining_finist = analyze_helper.set_fullname_index(
                list_salary, salary_all_branch_trining_index)
            list_analze['dept_name'] = 'ทั้งหมด'
            list_analze['num_student'] = len(df)
            list_analze[
                'salary_all_branch_training'] = salary_all_branch_trining_finist.to_dict(
                    'index')
            salary_branch_trining.append(list_analze)

            list_branch_traning = df_brach.index.tolist()
            for i in list_branch_traning:
                list_analze = {}
                data = df[df['branch_id'] == i]
                if not data.empty:
                    analyze_salart = self.__salary_branch_training(
                        data[['salary', 'apprentice_id']])
                    analyze_salart = analyze_helper.check_list_column(
                        status_apprentice.index.values, analyze_salart)
                    analyze_salart = analyze_helper.check_list(
                        list_salary.keys(), analyze_salart)
                    analyze_salart = analyze_helper.set_fullname_column(
                        status_apprentice_dic, analyze_salart)
                    analyze_salart = analyze_helper.set_fullname_index(
                        list_salary, analyze_salart)
                    list_analze['dept_name'] = branch_dic[i]
                    list_analze['num_student'] = len(data)
                    list_analze[
                        'salary_all_branch_training'] = analyze_salart.to_dict(
                            'index')
                else:
                    analyze_salart = pd.DataFrame(
                        0,
                        index=np.arange(len(list_salary)),
                        columns=status_apprentice.status_title.tolist())
                    analyze_salart['list_salary'] = list_salary.values()
                    analyze_salart.set_index('list_salary', inplace=True)
                    list_analze['dept_name'] = branch_dic[i]
                    list_analze['num_student'] = 0
                    list_analze[
                        'salary_all_branch_training'] = analyze_salart.to_dict(
                            'index')

                salary_branch_trining.append(list_analze)

            list_branch_traning.insert(0, 'all')

            value = {
                'count_student':
                len(df.index),
                'count_by_branch':
                analyze_helper.set_fullname_index(branch_dic,
                                                  df_branch_finish).to_dict(),
                'count_by_status':
                analyze_helper.set_fullname_index(
                    status_working_dic, count_by_status_finish).to_dict(),
                'count_by_training':
                analyze_helper.set_fullname_index(
                    status_apprentice_dic, count_by_training_finish).to_dict(),
                'salary_all_branch_training':
                dict(zip(list_branch_traning, salary_branch_trining)),
                'gpax_by_branch':
                analyze_helper.set_fullname_index(
                    branch_dic, gpax_by_branch_finish).to_dict(),
            }

            response = True
            message = "Analyze Successfully"
        else:
            value = {}
            response = False
            message = "Don't have Data"
        return inner_res_helper.make_inner_response(response=response,
                                                    message=message,
                                                    value=value)