Exemplo n.º 1
0
def direction_based_entry(mkt: MarketData, sig: Signal,
                          direction_action_dict: dict) -> Trades:
    """Take positions.

    Args:
        mkt: Market data
        sig: Signal data
        direction_action_dict: Dictionary from signals to actions
    Result:
        Trades
    """
    assert all([idx in mkt.index for idx in sig.index])
    df = sig

    trades = []  # type: List[pd.Dataframe]
    for direction, action in direction_action_dict.items():

        amount = action.act_on_amount()
        if amount == Action.Donothing.act_on_amount():
            continue

        trades.append(
            pd.DataFrame(
                index=df[df["pred"] == direction.value].index,
                data=amount,
                columns=["amount"],
            ))

    df_trades = pd.concat(trades, axis=0).sort_index()
    df_trades.loc[:, "_id"] = range(len(df_trades.index))

    t = from_dataframe(df_trades, df.symbol)
    return t
Exemplo n.º 2
0
    def _exit_by_max_holding_time(
        trades: Trades,
        df: pd.DataFrame,
        max_holding_time: pd.Timedelta,
        exit_condition: Callable[[pd.DataFrame, pd.Series, pd.Timestamp],
                                 bool],
    ) -> Trades:

        indices = []  # type: List[pd.Timestamp]
        exits = []  # type: List[Tuple[float, int]]
        for i in trades.ids:
            trade = trades.get_trade(i)
            if trade.sum() == 0:
                continue

            idx = trade.index[0]

            start = max(idx, df.index[0])
            end = min(idx + max_holding_time, df.index[-1])

            df_exit = df.loc[start:end]
            transaction = _exit_transaction(df_exit, trade, exit_condition)

            indices.append(transaction.timestamp)
            exits.append((transaction.amount, i))

        df = pd.DataFrame(index=indices, data=exits, columns=["amount", "_id"])
        return from_dataframe(df, symbol, currency_unit)
Exemplo n.º 3
0
def filter_entry_by_time(
    trades: Trades, unit: str, container_set: tuple
) -> Type["Trades"]:
    """Filter trade which match conditions at least one element. 
        -> e.g. for container_set = [1,2] and unit = 'hour' Trades of hour 1 or 2 
            will be return.
    Args:
        container_set: The results will only contain elements of time in this set
        unit: Can be 'hour', 'minute'... The results.time will be in the set

    Returns:
        Trades.
    """

    sort = trades.sort_values("_id")

    df = pd.DataFrame(
        data=np.zeros((sort.shape[0], 3)), columns=["amount", "_id", "index"]
    )

    j = 0

    for i in range(0, sort.index.size, 2):
        entry_index = sort.index[i]
        exit_index = sort.index[i + 1]
        if (
            getattr(entry_index, unit) in container_set
            or getattr(exit_index, unit) in container_set
        ):
            # This code is faster than an iloc.
            df.at[j, "amount"] = sort.iat[i, 0]
            df.at[j + 1, "amount"] = sort.iat[i + 1, 0]
            df.at[j, "_id"] = sort.iat[i, 1]
            df.at[j + 1, "_id"] = sort.iat[i + 1, 1]
            df.at[j, "index"] = entry_index
            df.at[j + 1, "index"] = exit_index

            j += 2

    df = df.iloc[0:j, :].sort_values("index").set_index("index")
    df.index.name = None

    return from_dataframe(df, trades.symbol, trades.currency_unit)
Exemplo n.º 4
0
    def _exit(
        trades: Trades,
        df: pd.DataFrame,
        exit_condition: Callable[[pd.DataFrame, pd.Series], pd.Series],
    ) -> pd.Series:

        indices = []  # type: List[pd.Timestamp]
        exits = []  # type: List[Tuple[float, int]]
        for i in trades.ids:
            trade = trades.get_trade(i)
            if trade.sum() == 0:
                continue

            idx = trade.index[0]
            df_exit = df[idx <= df.index]
            transaction = _exit_transaction(df_exit, trade, exit_condition)

            indices.append(transaction.timestamp)
            exits.append((transaction.amount, i))

        df = pd.DataFrame(index=indices, data=exits, columns=["amount", "_id"])

        return from_dataframe(df, symbol)