Exemplo n.º 1
0
        # dataframe for a historical instrument feature (basis in this case). The index is the timestamps
        # atmost upto lookback data points. The columns of this dataframe are the stocks/instrumentIds.
        lookbackInstrumentValue = lookbackInstrumentFeatures.getFeatureDf('F5')

        # The last row of the previous dataframe gives the last calculated value for that feature (basis in this case)
        # This returns a series with stocks/instrumentIds as the index.
        currentValue = lookbackInstrumentValue.iloc[-1]

        if param1Value == 'value1':
            return currentValue * 0.1
        else:
            return currentValue * 0.5


if __name__ == "__main__":
    if updateCheck():
        print(
            'Your version of the auquan toolbox package is old. Please update by running the following command:'
        )
        print('pip install -U auquan_toolbox')
    else:
        tf = MyTradingFunctions()
        tsParams = MyTradingParams(tf)
        tradingSystem = TradingSystem(tsParams)
        # Set onlyAnalyze to True to quickly generate csv files with all the features
        # Set onlyAnalyze to False to run a full backtest
        # Set makeInstrumentCsvs to False to not make instrument specific csvs in runLogs. This improves the performance BY A LOT
        tradingSystem.startTrading(onlyAnalyze=False,
                                   shouldPlot=True,
                                   makeInstrumentCsvs=True)
Exemplo n.º 2
0
        param1Value = featureParams['param1']

        # A holder for the all the instrument features
        lookbackInstrumentFeatures = instrumentManager.getLookbackInstrumentFeatures()

        # dataframe for a historical instrument feature (basis in this case). The index is the timestamps
        # atmost upto lookback data points. The columns of this dataframe are the stocks/instrumentIds.
        lookbackInstrumentValue = lookbackInstrumentFeatures.getFeatureDf('Adj Close')

        # The last row of the previous dataframe gives the last calculated value for that feature (basis in this case)
        # This returns a series with stocks/instrumentIds as the index.
        currentValue = lookbackInstrumentValue.iloc[-1]

        if param1Value == 'value1':
            return currentValue * 0.1
        else:
            return currentValue * 0.5


if __name__ == "__main__":
    if updateCheck():
        print('Your version of the auquan toolbox package is old. Please update by running the following command:')
        print('pip install -U auquan_toolbox')
    else:
        tsParams = MyTradingParams()
        tradingSystem = TradingSystem(tsParams)
        # Set onlyAnalyze to True to quickly generate csv files with all the features
        # Set onlyAnalyze to False to run a full backtest
        # Set makeInstrumentCsvs to False to not make instrument specific csvs in runLogs. This improves the performance BY A LOT
        tradingSystem.startTrading(onlyAnalyze=False, shouldPlot=True, makeInstrumentCsvs=True, createResultDict=False)
Exemplo n.º 3
0
def run_plain_momentum():
    tsParams = PlainMomParams()
    tradingSystem = TradingSystem(tsParams)
    results = tradingSystem.startTrading()
    return results
Exemplo n.º 4
0
                                  currentMarketFeatures['ma_r%s_90' % i]
                                  ) / currentMarketFeatures['sdev_r%s_90' % i]
                else:
                    z_score[i] = 0
                instrument = instrumentManager.getInstrument(instrumentIds[0])
                #z_score = z_score + instrument.getDataDf()['position']/20000

                if currentMarketFeatures['correl_r%s_90' % i] < 0.5:
                    z_score[i] = 0

                if z_score[i] > 1:
                    prediction[PAIRIDS[i][0]] = 0
                    prediction[PAIRIDS[i][1]] = 1
                elif z_score[i] < -1:
                    prediction[PAIRIDS[i][0]] = 1
                    prediction[PAIRIDS[i][1]] = 0
                elif (z_score[i] > 0.5) or (z_score[i] < -0.5):
                    prediction[PAIRIDS[i][0]] = 0.75
                    prediction[PAIRIDS[i][1]] = 0.25
                else:
                    prediction[PAIRIDS[i][0]] = 0.5
                    prediction[PAIRIDS[i][1]] = 0.5

        return prediction


if __name__ == "__main__":
    tsParams = MyTradingParams()
    tradingSystem = TradingSystem(tsParams)
    tradingSystem.startTrading(onlyAnalyze=False)
Exemplo n.º 5
0
            ma90 = ma90Data.iloc[-1]

            # Calculate Hurst Exponent
            hurst = ma90Data.apply(hurst_f, axis=0)
            # Go long if Hurst > 0.5 and both long term and short term momentum are positive
            predictions[(hurst > 0.5) & (mom30 > 0) & (mom10 > 0)] = 1
            # Go short if Hurst > 0.5 and both long term and short term momentum are negative
            predictions[(hurst > 0.5) & (mom30 <= 0) & (mom10 <= 0)] = 0

            # Get out of position if Hurst > 0.5 and long term momentum is positive while short term is negative
            predictions[(hurst > 0.5) & (mom30 > 0) & (mom10 <= 0)] = 0.5
            # Get out of position if Hurst > 0.5 and long term momentum is negative while short term is positive
            predictions[(hurst > 0.5) & (mom30 <= 0) & (mom10 > 0)] = 0.5

            # Get out of position if Hurst < 0.5
            predictions[hurst <= 0.5] = 0.5
        else:
            # If no sufficient data then don't take any positions
            predictions.values[:] = 0.5
        return predictions

    def updateCount(self):
        self.count = self.count + 1


tf = MyTradingFunctions()
tsParams = MomentumTradingParams(tf)
tradingSystem = TradingSystem(tsParams)

results = tradingSystem.startTrading()
Exemplo n.º 6
0
		# dataframe for a historical instrument feature (basis in this case). The index is the timestamps
		# atmost upto lookback data points. The columns of this dataframe are the symbols/instrumentIds.
		lookbackInstrumentValue = lookbackInstrumentFeatures.getFeatureDf('symbolVWAP')

		# The last row of the previous dataframe gives the last calculated value for that feature (basis in this case)
		# This returns a series with symbols/instrumentIds as the index.
		currentValue = lookbackInstrumentValue.iloc[-1]

		if param1Value == 'value1':
			return currentValue * 0.1
		else:
			return currentValue * 0.5


if __name__ == "__main__":
	if updateCheck():
		print('Your version of the auquan toolbox package is old. Please update by running the following command:')
		print('pip install -U auquan_toolbox')
	else:
		print('Loading your config dicts and prediction function')
		tf = MyTradingFunctions()
		print('Loaded config dicts and prediction function, Loading Problem Params')
		tsParams1 = MyTradingParams(tf, 'Revenue(Y)')
		tradingSystem = TradingSystem(tsParams1)
#		s=MyTradingFunctions()
#		s.getInstrumentIds()
		results1 = tradingSystem.startTrading(onlyAnalyze=False, shouldPlot=False, makeInstrumentCsvs=False)
#		tsParams2 = MyTradingParams(tf, 'Income(Y)')
#		tradingSystem = TradingSystem(tsParams2)
#		results2 = tradingSystem.startTrading(onlyAnalyze=False, shouldPlot=False, makeInstrumentCsvs=False)
	print('Score: %0.3f'%((results1['score'])))#+results2['score'])/2))
Exemplo n.º 7
0
    instrument: Instrument for which this feature is being calculated
    instrumentManager: A holder for all the instruments
    '''
    @classmethod
    def computeForInstrument(cls, featureParams, featureKey, currentFeatures, instrument, instrumentManager):
        # Current Book Data (dictionary) for the Instrument. This is the last update to the instrument
        bookData = instrument.getCurrentBookData()

        # Custom parameter which can be used as input to computation of this feature
        param1Value = featureParams['param1']

        # dataframe for historical instrument features. The last row of this data frame
        # would contain the features which are being calculated in this update cycle or for this time.
        # The second to last row (if exists) would have the features for the previous
        # time update. Columns will be featureKeys for different features
        lookbackInstrumentFeaturesDf = instrument.getDataDf()

        return 0


if __name__ == "__main__":
    if updateCheck():
        print 'Your version of the auquan toolbox package is old. Please update by running the following command:'
        print 'pip install -U auquan_toolbox'
    problem1Solver = Problem1Solver()
    tsParams = FairValueTradingParams(problem1Solver)
    tradingSystem = TradingSystem(tsParams)
    # Set onlyAnalyze to True to quickly generate csv files with all the features
    # Set onlyAnalyze to False to run a full backtest
    tradingSystem.startTrading(onlyAnalyze=False, shouldPlot=False)
Exemplo n.º 8
0
def run_hurst_momentum():
    tsParams = HurstMomParams()
    tradingSystem = TradingSystem(tsParams)
    results = tradingSystem.startTrading()
    return results
Exemplo n.º 9
0
def run_hurst_pairs():
    tsParams = HurstPairParams()
    tradingSystem = TradingSystem(tsParams)
    result = tradingSystem.startTrading()
    return result
Exemplo n.º 10
0
def run_plain_pairs():
    tsParams = PlainPairParams()
    tradingSystem = TradingSystem(tsParams)
    result = tradingSystem.startTrading()
    return result