Exemplo n.º 1
0
    def summary(self, prefix='', include_total_time=False) -> str:
        import operator
        li = [(name, self.__watches[name].elapsed()) for name in self.__watches]
        li = sorted(li, key=operator.itemgetter(1), reverse=True)
        s = ''
        # for name, total_milli_secs in li:
        #     s += 'total [%s] %s\n' % (DateUtil.millisecs_to_string(total_milli_secs), name)
        if include_total_time:
            for name, total_milli_secs in li:
                if self.__cnt[name] > 0:
                    if len(prefix) > 0:
                        s += '%s total [%s] %s\n' % (
                            prefix, DateUtil.millisecs_to_string(float(total_milli_secs)), name)
                    else:
                        s += 'total [%s] %s\n' % (
                            DateUtil.millisecs_to_string(float(total_milli_secs)), name)

        for name, total_milli_secs in li:
            if self.__cnt[name] > 0:
                if len(prefix) > 0:
                    s += '%s average [%s] %s\n' % (
                        prefix, DateUtil.millisecs_to_string(float(total_milli_secs) / float(self.__cnt[name])), name)
                else:
                    s += 'average [%s] %s\n' % (
                        DateUtil.millisecs_to_string(float(total_milli_secs) / float(self.__cnt[name])), name)
        return s
Exemplo n.º 2
0
    if not os.path.exists(test_file):
        create_data4add(test_file, n_test, digit_max=99)

    for training_mode in [True, False]:  # training & testing
        for batch_size in [1, 10, 100]:
            tf.reset_default_graph()  # Clears the default graph stack and resets the global default graph.
            log.info('')
            log.info('training_mode: %s, batch_size: %s, total_train_time: %s secs' % (training_mode, batch_size, total_train_time))

            model_name = os.path.basename(__file__).replace('.py', '')
            model_file = os.path.join(SAMPLE_MODELS_DIR, '%s.n_train_%s.batch_size_%s.total_train_time_%s/model' % (model_name, n_train, batch_size, total_train_time))
            model_dir = os.path.dirname(model_file)
            log.info('model_name: %s' % model_name)
            log.info('model_file: %s' % model_file)

            scope_name = '%s.%s.batch_size_%s.total_train_time_%s' % (model_name, DateUtil.current_yyyymmdd_hhmm(), batch_size, total_train_time)
            log.info('scope_name: %s' % scope_name)

            with tf.device('/gpu:0'):
                with tf.Graph().as_default():  # for reusing graph
                    checkpoint = tf.train.get_checkpoint_state(model_dir)
                    is_training = True if training_mode or not checkpoint else False  # learning or testing

                    config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))
                    with tf.Session(config=config) as sess:
                        train_pipeline = input_pipeline([train_file], batch_size=batch_size, shuffle=True, delim='\t', splits=3)
                        valid_pipeline = input_pipeline([valid_file], batch_size=n_valid, shuffle=True, delim='\t', splits=3)
                        test_pipeline = input_pipeline([test_file], batch_size=n_test, shuffle=True, delim='\t', splits=3)

                        if is_training:  # training
                            x, y, learning_rate, W1, b1, y_hat, cost, train_step, summary = create_graph(model_name, scope_name, verbose=False)
Exemplo n.º 3
0
 def elapsed_string(self, name=DEFAULT_WATCH_NAME) -> str:
     return DateUtil.secs_to_string(self.elapsed(name))
Exemplo n.º 4
0
            log.info('')
            log.info(
                'training_mode: %s, batch_size: %s, total_train_time: %s secs'
                % (training_mode, batch_size, total_train_time))

            model_name = os.path.basename(__file__).replace('.py', '')
            model_file = os.path.join(
                MODELS_DIR,
                '%s.n_train_%s.batch_size_%s.total_train_time_%s/model' %
                (model_name, n_train, batch_size, total_train_time))
            model_dir = os.path.dirname(model_file)
            log.info('model_name: %s' % model_name)
            log.info('model_file: %s' % model_file)

            scope_name = '%s.%s.batch_size_%s.total_train_time_%s' % (
                model_name, DateUtil.current_yyyymmdd_hhmm(), batch_size,
                total_train_time)
            log.info('scope_name: %s' % scope_name)

            with tf.device('/gpu:0'):
                with tf.Graph().as_default():  # for reusing graph
                    checkpoint = tf.train.get_checkpoint_state(model_dir)
                    is_training = True if training_mode or not checkpoint else False  # learning or testing

                    config = tf.ConfigProto(gpu_options=tf.GPUOptions(
                        allow_growth=True, visible_device_list='0'))
                    with tf.Session(config=config) as sess:
                        train_pipeline = input_pipeline([train_file],
                                                        batch_size=batch_size,
                                                        shuffle=True,
                                                        delim='\t',
    train_time = 10 * 60  # 6. 끝까지 학습  (cost: 4-5) (6분)
    # # #  7. 좀더 줄이려면 어떻게 해야 할까요? (decay)

    log.info('%s -> %s -> %s -> %s -> %s' % (x_train.shape[1], n_hiddens, activation.__name__, n_hiddens, 1))
    log.info('weights_initializer: %s' % weights_initializer.__name__)
    log.info('learning_rate: %.4f' % learning_rate)
    log.info('train_time: %s' % train_time)

    how_many_trains = 3 if train_time < 10 else 1
    log.info('how_many_trains: %s' % how_many_trains)
    for _ in range(how_many_trains):
        time.sleep(1)
        tf.reset_default_graph()  # Clears the default graph stack and resets the global default graph.
        tf.set_random_seed(7942)  # 3. 결과를 규칙적으로 만들자. (cost: 600-700)

        scope_name = '%s.%s' % (func.__name__, DateUtil.current_yyyymmdd_hhmmss())
        x, y, y_hat, cost, rsme, train_step, summary = build_graph(scope_name, n_features, n_hiddens, n_classes, learning_rate, activation=activation, weights_initializer=weights_initializer,
                                                                   bias_value=bias_value)
        try:
            watch = WatchUtil()

            model_file_saved = False
            model_file = os.path.join(MODELS_DIR, '%s_%s/model' % (os.path.basename(__file__.replace('.py', '')), func.__name__))
            model_dir = os.path.dirname(model_file)
            # log.info('model_file: %s' % model_file)
            if not os.path.exists(model_dir):
                # log.info('model_dir: %s' % model_dir)
                os.makedirs(model_dir)

            config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))
            saver = tf.train.Saver()
Exemplo n.º 6
0
                li.append((start_date, end_date))
                start_date = end_date + datetime.timedelta(days=1)
        else:
            end_date = self.to_date
            while end_date >= self.from_date:
                start_date = end_date - datetime.timedelta(days=max_days)
                if start_date < self.from_date:
                    start_date = self.from_date
                li.append((start_date, end_date))
                end_date = start_date - datetime.timedelta(days=1)
        return li


if __name__ == '__main__':
    # start_date, end_date = DateUtil.string_to_datetime('2015-11-29 00:00:00'), DateUtil.string_to_datetime('2016-01-01 00:00:00')
    start_date_index, end_date = DateUtil.string_to_date(
        '2015-11-01'), DateUtil.string_to_date('2016-01-05')
    # between = DateBetweenUtil(start_date_index, end_date)
    # for a, b in between.date_split(from_start=True):
    #     print(a, b)
    # print()
    # for a, b in between.date_split(from_start=False):
    #     print(a, b)
    # between = DateBetweenUtil(datetime.datetime(2013, 1, 31, 1), datetime.datetime(2013, 2, 2, 4))
    # print(between.days())
    # for d in between.date_list():
    #     print(str(d), type(d))
    # print(between.hour_list())
    # check exception raised.
    # assert Exception, DateBetweenUtil(10, datetime.datetime(2013, 2, 2, 4))
Exemplo n.º 7
0
    learning_rate = 0.001 # Adeam은 3승 이하 추천 / 590 -> 670으로 증가 | best/total 체크가 필요 : 431/431인 경우로 러닝 시간이 부족한 상황
    train_time = 10 * 60 # best 10분 / cpu에서는 10배 정도 늦음
    ### 최적화 테스트 : 끝

    print('%s -> %s -> %s -> %s -> %s' % (x_train.shape[1], n_hiddens, activation.__name__, n_hiddens, 1))
    print('weights_initializer: %s' % weights_initializer.__name__)
    print('learning_rate: %.4f' % learning_rate)
    print('train_time: %s' % train_time)

    how_many_trains = 3 if train_time <= 1 else 1  # 1초 실행하는 경우, 3번 실험 그 외에는 1번 실험.
    for _ in range(how_many_trains) :
        # time.sleep(1)
        tf.reset_default_graph() # 기존 session을 초기화
        tf.set_random_seed(7942) # tf.random_normal_initializer 사용하기 때문에 설정 필요

        scope_name = '%s.%s' % (func.__name__,DateUtil.current_yyyymmdd_hhmmss()) # graph 겹치지 않게 하기 위해서, func + 날짜 이름으로 설정하는 것을 추천
        x, y, y_hat, cost, rsme, train_step, summary = build_graph(scope_name, n_features, n_hiddens, n_classes, learning_rate, activation=activation, weights_initializer=weights_initializer, bias_value=bias_value)

        try :
            watch = WatchUtil()

            model_file_saved = False
            model_file = os.path.join('%s/workspace/nlp4kor/models/%s_%s/model' % (os.getcwd(), os.path.basename(__name__.replace('.py', '')), func.__name__))
            model_dir = os.path.dirname(model_file)
            # print('model_file: %s' % model_file)
            if not os.path.exists(model_dir):
                # print('model_dir: %s' % model_dir)
                os.makedirs(model_dir)

            config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))
            saver = tf.train.Saver() # 최근 5개만 남개 되어서 max_to_keep=None 해야함