Exemplo n.º 1
0
 def test_mixed_schema(self):
     a_1 = {'a': 1.0, 'b': 2.0}
     a_2 = {'a': 3.0, 'c': 4.0}
     b = [a_1, a_2]
     node = from_object(b)
     flattened = node.flatten(name_strategy=NameStrategy.CONCATENATE_ALWAYS)
     self.df_equality({'a': [1, 3], 'b': [2, np.nan], 'c': [np.nan, 4]}, flattened)
Exemplo n.º 2
0
 def test_simple_flatten(self):
     a1 = 1
     a2 = 2
     a = SimpleObject(a1)
     b = SimpleObject(a2)
     d = {'a': a, 'b': b}
     node = from_object(d)
     flattened = node.flatten(name_strategy=NameStrategy.CONCATENATE_ALWAYS)
     self.df_equality({'a_value': [1], 'b_value': [2]}, flattened)
Exemplo n.º 3
0
 def test_null_list(self):
     b = [1.0, 1.0, 5.0]
     c = {'b': b, 'c': 2.0}
     c_null = {'b': None, 'c': 3.0}
     d = [c, c_null]
     c = {'d': d, 'e': 4.0}
     node = from_object(c)
     flattened = node.flatten(name_strategy=NameStrategy.CONCATENATE_ALWAYS)
     self.df_equality({'d_b': [1, 1, 5], 'd_c': [2, 2, 2], 'e': [4, 4, 4]}, flattened)
Exemplo n.º 4
0
 def test_null_primitive(self):
     a = 1.0
     b = [a, a, None]
     c = {'b': b}
     d = [c, c]
     c = {'d': d, 'e': 2.0}
     node = from_object(c)
     flattened = node.flatten(name_strategy=NameStrategy.CONCATENATE_ALWAYS)
     self.df_equality({'d_b': [1, 1, np.nan, 1, 1, np.nan], 'e': [2, 2, 2, 2, 2, 2]}, flattened)
Exemplo n.º 5
0
 def test_flatten_multiple_lists(self):
     a = [1, 2]
     b = [3, 4]
     c = 1
     d = {'a': a, 'b': b, 'c': c}
     node = from_object(d)
     self.assertRaises(ValueError, node.flatten)
     flattened = node.flatten(flatten_strategy=FlattenStrategy.FLATTEN_AVAILABLE)
     self.df_equality({'c': [c]}, flattened)
Exemplo n.º 6
0
 def test_flatten_list(self):
     a1 = 1.0
     a2 = None
     a = SimpleObject(a1)
     b = SimpleObject(a2)
     c = ListObject([a, b])
     d = {'a': c, 'b': 3}
     node = from_object(d)
     flattened = node.flatten()
     self.df_equality({'value': [1, np.nan], 'b': [3, 3]}, flattened)
Exemplo n.º 7
0
 def test_flatten_nested_list(self):
     a1 = 1.0
     a2 = None
     a = SimpleObject(a1)
     b = SimpleObject(a2)
     c = ListObject([a, b])
     c_a = ListObject([c, c])
     d = {'a': c_a, 'b': 3}
     node = from_object(d)
     flattened = node.flatten(name_strategy=NameStrategy.CONCATENATE_ALWAYS)
     self.df_equality({'a_values_values_value': [1, np.nan, 1, np.nan], 'b': [3, 3, 3, 3]}, flattened)
Exemplo n.º 8
0
 def test_attr(self):
     a1 = 1.0
     a2 = None
     a = SimpleObject(a1)
     b = SimpleObject(a2)
     c = ListObject([a, b])
     d = SimpleObject(c)
     node = from_object(d)
     primitive_node = node.value.values.value
     flattened = primitive_node.flatten()
     self.df_equality({'value': [1, np.nan]}, flattened)
Exemplo n.º 9
0
 def test_flatten_null(self):
     # this demonstrates that when we can't determine the schema, we drop the field entirely. for data formats where
     # the schema is known even when there is no data, should we have a way to fill out an empty node? I guess that
     # is dependent on the converter, as it can create the necessary "empty" nodes (though it must fill out a
     # primitive node at the end)
     a1 = 1
     a2 = None
     a = SimpleObject(a1)
     b = SimpleObject(a2)
     d = {'a': a, 'b': b}
     node = from_object(d)
     flattened = node.flatten(name_strategy=NameStrategy.CONCATENATE_ALWAYS)
     self.df_equality({'a_value': [1]}, flattened)
Exemplo n.º 10
0
 def test_str(self):
     a = 1.0
     b = [a, a, a]
     c = {'b': b}
     d = [c, c]
     c = {'d': d, 'e': 2.0}
     node = from_object(c)
     elements = list()
     strings = {'d': '- d []\n    - b []float64', 'e': '- e float64'}
     for key in node._children:
         elements.append(strings[key])
     s = '\n'.join(elements)
     text = str(node)
     self.assertEqual(s, text)
Exemplo n.º 11
0
 def test_prim_only(self):
     a = [1, 2, 3]
     node = from_object(a)
     flattened = node.flatten()
     self.df_equality({None: a}, flattened)
Exemplo n.º 12
0
 def test_incomplete_node(self):
     node = from_object([])
     flattened = node.flatten()
     self.df_equality({}, flattened)
Exemplo n.º 13
0
 def test_excluded_lists_are_ignored(self):
     node = from_object([{'a': None, 'b': [2, 3], 'c': [-2, -3]}, {'a': 1, 'b': [2, 4], 'c': [-2, -4]}])
     flattened = node.flatten(include=['a'])
     self.df_equality({'a': [0, 1]}, flattened)
     flattened = node.flatten(include=['b'])
     self.df_equality({'b': [2, 3, 2, 4]}, flattened)
Exemplo n.º 14
0
 def test_multi_index_naming(self):
     node = from_object({'a': {'c': 1}, 'b': 2})
     flattened = node.flatten(name_strategy=NameStrategy.MULTI_INDEX)
     self.df_equality({('a', 'c'): [1], ('b',): [2]}, flattened)
Exemplo n.º 15
0
 def test_conflicting_clusions(self):
     c = {'a': 1, 'b': 2}
     node = from_object(c)
     self.assertRaises(AssertionError, lambda: node.flatten(include={'a'}, exclude={'a'}))
Exemplo n.º 16
0
 def test_exclude(self):
     node = from_object({'a': 1, 'b': 2})
     flattened = node.flatten(exclude={'b'})
     self.df_equality({'a': [1]}, flattened)
Exemplo n.º 17
0
 def test_strings(self):
     a1 = 'a'
     a = SimpleObject(a1)
     node = from_object(a)
     flattened = node.flatten(name_strategy=NameStrategy.CONCATENATE_ALWAYS)
     self.df_equality({'value': 'a'}, flattened)