Exemplo n.º 1
0
    def test_cauchy_posterior_sampling(self):
        """
        Test whether the posterior can successully be sampled from
        """
        counts = np.array((10, 103))
        biases = np.array((10.0, 30.0))
        esimator = MultinomialBayesEstimator(counts=counts,
                                             zetas=biases,
                                             prior='cauchy',
                                             location=0,
                                             spread=100)

        # Sample from the posterior
        esimator.sample_posterior(nwalkers=4, nmoves=10)
Exemplo n.º 2
0
    def test_bias_initialization(self):
        """
        Assess whether the biases are correctly read in and appropriately set to zero if no biases are applied.
        """
        # Initialize the class with fake samples
        counts = np.array((10, 103, 243, 82))
        biases = np.array((0.0, 0.0, 0.0, 0.0))

        esimator_biased = MultinomialBayesEstimator(counts=counts,
                                                    zetas=biases)
        esimator_unbiased = MultinomialBayesEstimator(counts=counts)

        assert np.all(
            esimator_unbiased.free_energies == esimator_biased.free_energies)
Exemplo n.º 3
0
    def test_map_estimation(self):
        """
        Test if the maximum aposteriori estimator works
        """
        # Initialize the class with fake samples
        counts = np.array((10, 103, 243, 82))
        biases = np.array((10.0, 30.0, 43.0, 28.0))
        esimator = MultinomialBayesEstimator(counts=counts,
                                             zetas=biases,
                                             prior='gaussian',
                                             location=0,
                                             spread=100)

        map = esimator.map_estimator()
Exemplo n.º 4
0
    def test_map_estimation_stacked_inputs(self):
        """
        Test if the maximum aposteriori estimator works when matrices are supplied for the counts and biases.
        """
        # Initialize the class with fake samples
        counts = np.array(((10, 103, 243, 82), (30, 11, 23, 72)))
        biases = np.array(((10.0, 30.0, 43.0, 28.0), (4.0, 14.0, 36.0, 81.0)))
        esimator = MultinomialBayesEstimator(counts=counts,
                                             zetas=biases,
                                             prior='gaussian',
                                             location=0,
                                             spread=100)

        map = esimator.map_estimator()
Exemplo n.º 5
0
    def test_stacking_inputs(self):
        """
        The class for Multinomial bayesian estimation should be able to handle histograms from simulations with
        different applied biases, this is achieved with using matrices of histograms and biases.
        """
        counts = np.array(((10, 103, 243, 82), (30, 11, 23, 72)))
        biases = np.array(((10.0, 30.0, 43.0, 28.0), (4.0, 14.0, 36.0, 81.0)))

        esimator = MultinomialBayesEstimator(counts=counts, zetas=biases)