Exemplo n.º 1
0
def get_stages_todo(ordered_stages, last_stage=None, extra_stages=None):
    """

    Parameters
    ----------
    ordered_stages: list of banzai.stages.Stage objects
    last_stage: banzai.stages.Stage
                Last stage to do
    extra_stages: Stages to do after the last stage

    Returns
    -------
    stages_todo: list of banzai.stages.Stage
                 The stages that need to be done

    Notes
    -----
    Extra stages can be other stages that are not in the ordered_stages list.
    """
    if extra_stages is None:
        extra_stages = []

    if last_stage is None:
        last_index = None
    else:
        last_index = ordered_stages.index(last_stage) + 1

    stages_todo = [import_utils.import_attribute(stage) for stage in ordered_stages[:last_index]]

    stages_todo += [import_utils.import_attribute(stage) for stage in extra_stages]

    return stages_todo
Exemplo n.º 2
0
def run_master_maker(image_path_list, runtime_context, frame_type):
    images = [image_utils.read_image(image_path, runtime_context) for image_path in image_path_list]
    stage_constructor = import_utils.import_attribute(settings.CALIBRATION_STACKER_STAGE[frame_type.upper()])
    stage_to_run = stage_constructor(runtime_context)
    images = stage_to_run.run(images)
    for image in images:
        image.write(runtime_context)
Exemplo n.º 3
0
 def get_calibration_filename(image):
     telescope_filename_function = import_utils.import_attribute(
         context.TELESCOPE_FILENAME_FUNCTION)
     name_components = {
         'site': image.site,
         'telescop': telescope_filename_function(image),
         'camera': image.header.get('INSTRUME', ''),
         'epoch': image.epoch,
         'cal_type': calibration_type.lower()
     }
     cal_file = '{site}{telescop}-{camera}-{epoch}-{cal_type}'.format(
         **name_components)
     for function_name in context.CALIBRATION_FILENAME_FUNCTIONS[
             calibration_type]:
         filename_function = import_utils.import_attribute(function_name)
         filename_part = filename_function(image)
         if len(filename_part) > 0:
             cal_file += '-{}'.format(filename_part)
     cal_file += '.fits'
     return cal_file
Exemplo n.º 4
0
def run_master_maker(image_path_list, runtime_context, frame_type):
    images = [
        image_utils.read_image(image_path, runtime_context)
        for image_path in image_path_list
    ]
    stage_constructor = import_utils.import_attribute(
        settings.CALIBRATION_STACKER_STAGE[frame_type.upper()])
    stage_to_run = stage_constructor(runtime_context)
    images = stage_to_run.run(images)
    for image in images:
        image.write(runtime_context)
Exemplo n.º 5
0
def get_stages_todo(ordered_stages, last_stage=None, extra_stages=None):
    """

    Parameters
    ----------
    ordered_stages: list of banzai.stages.Stage objects
    last_stage: banzai.stages.Stage
                Last stage to do
    extra_stages: Stages to do after the last stage

    Returns
    -------
    stages_todo: list of banzai.stages.Stage
                 The stages that need to be done

    Notes
    -----
    Extra stages can be other stages that are not in the ordered_stages list.
    """
    if extra_stages is None:
        extra_stages = []

    if last_stage is None:
        last_index = None
    else:
        last_index = ordered_stages.index(last_stage) + 1

    stages_todo = [
        import_utils.import_attribute(stage)
        for stage in ordered_stages[:last_index]
    ]

    stages_todo += [
        import_utils.import_attribute(stage) for stage in extra_stages
    ]

    return stages_todo
Exemplo n.º 6
0
def read_image(filename, runtime_context):
    try:
        frame_class = import_utils.import_attribute(
            runtime_context.FRAME_CLASS)
        image = frame_class(runtime_context, filename=filename)
        if image.instrument is None:
            logger.error("Image instrument attribute is None, aborting",
                         image=image)
            raise IOError
        munge(image)
        return image
    except Exception:
        logger.error('Error loading image: {error}'.format(
            error=logs.format_exception()),
                     extra_tags={'filename': filename})
Exemplo n.º 7
0
def add_bpm():
    parser = argparse.ArgumentParser(description="Add a bad pixel mask to the db.")
    parser.add_argument('--filename', help='Full path to Bad Pixel Mask file')
    parser.add_argument("--log-level", default='debug', choices=['debug', 'info', 'warning',
                                                                 'critical', 'fatal', 'error'])
    parser.add_argument('--db-address', dest='db_address',
                        default='mysql://*****:*****@localhost/test',
                        help='Database address: Should be in SQLAlchemy form')
    args = parser.parse_args()
    add_settings_to_context(args, banzai_nres.settings)
    logs.set_log_level(args.log_level)
    frame_factory = import_utils.import_attribute(banzai_nres.settings.FRAME_FACTORY)()
    bpm_image = frame_factory.open({'path': args.filename}, args)
    bpm_image.is_master = True
    banzai.dbs.save_calibration_info(bpm_image.to_db_record(DataProduct(None, filename=os.path.basename(args.filename),
                                                                        filepath=os.path.dirname(args.filename))),
                                     args.db_address)
Exemplo n.º 8
0
def add_bpms_from_archive():
    parser = argparse.ArgumentParser(description="Add bad pixel mask from a given archive api")
    parser.add_argument('--db-address', dest='db_address',
                        default='mysql://*****:*****@localhost/test',
                        help='Database address: Should be in SQLAlchemy form')
    args = parser.parse_args()
    add_settings_to_context(args, banzai_nres.settings)
    # Query the archive for all bpm files
    url = f'{banzai_nres.settings.ARCHIVE_FRAME_URL}/?OBSTYPE=BPM'
    archive_auth_header = banzai_nres.settings.ARCHIVE_AUTH_HEADER
    response = requests.get(url, headers=archive_auth_header)
    response.raise_for_status()
    results = response.json()['results']

    # Load each one, saving the calibration info for each
    frame_factory = import_utils.import_attribute(banzai_nres.settings.FRAME_FACTORY)()
    for frame in results:
        frame['frameid'] = frame['id']
        bpm_image = frame_factory.open(frame, args)
        if bpm_image is not None:
            bpm_image.is_master = True
            banzai.dbs.save_calibration_info(bpm_image.to_db_record(DataProduct(None, filename=bpm_image.filename,
                                                                                filepath=None)), args.db_address)
Exemplo n.º 9
0
def find_object_in_catalog(image, db_address, gaia_class, simbad_class):
    """
    Find the object in external catalogs. Update the ra and dec if found. Also add an initial classification if found.
    :return:
    """

    # Assume that the equinox and input epoch are both j2000.
    # Gaia uses an equinox of 2000, but epoch of 2015.5 for the proper motion
    coordinate = SkyCoord(ra=image.ra,
                          dec=image.dec,
                          unit=(units.deg, units.deg),
                          frame='icrs',
                          pm_ra_cosdec=image.pm_ra * units.mas / units.year,
                          pm_dec=image.pm_dec * units.mas / units.year,
                          equinox='j2000',
                          obstime=Time(2000.0, format='decimalyear'))
    transformed_coordinate = coordinate.apply_space_motion(
        new_obstime=Time(2015.5, format='decimalyear'))

    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        # 10 arcseconds should be a large enough radius to capture bright objects.
        gaia = import_utils.import_attribute(gaia_class)
        gaia_connection = gaia()
        gaia_connection.ROW_LIMIT = 200
        results = gaia_connection.query_object(
            coordinate=transformed_coordinate, radius=10.0 * units.arcsec)

    # Filter out objects fainter than r=12 and brighter than r = 5.
    # There is at least one case (gamma cas) that is in gaia but does not have a complete catalog record like proper
    # motions and effective temperatures.
    results = results[np.logical_and(results['phot_rp_mean_mag'] < 12.0,
                                     results['phot_rp_mean_mag'] > 5.0)]
    if len(results) > 0:
        # convert the luminosity from the LSun units that Gaia provides to cgs units
        results[0]['lum_val'] *= constants.L_sun.to('erg / s').value
        image.classification = dbs.get_closest_HR_phoenix_models(
            db_address, results[0]['teff_val'], results[0]['lum_val'])
        # Update the ra and dec to the catalog coordinates as those are basically always better than a user enters
        # manually.
        image.ra, image.dec = results[0]['ra'], results[0]['dec']
        if results[0]['pmra'] is not np.ma.masked:
            image.pm_ra, image.pm_dec = results[0]['pmra'], results[0]['pmdec']
    # If nothing in Gaia fall back to simbad. This should only be for stars that are brighter than mag = 3
    else:
        # IMPORTANT NOTE:
        # During e2e tests we do not import astroquery.simbad.Simbad. We import a mocked simbad call
        # which can be found in banzai_nres.tests.utils.MockSimbad . This returns a simbad table that is
        # truncated. If you add a new votable field, you will need to add it to the mocked table as well.
        simbad = import_utils.import_attribute(simbad_class)
        simbad_connection = simbad()
        simbad_connection.add_votable_fields('pmra', 'pmdec', 'fe_h', 'otype')
        try:
            results = simbad_connection.query_region(coordinate,
                                                     radius='0d0m10s')
        except astroquery.exceptions.TableParseError:
            response = simbad_connection.last_response.content
            logger.error(
                f'Error querying SIMBAD. Response from SIMBAD: {response}',
                image=image)
            results = []
        if results:
            results = remove_planets_from_simbad(results)
            results = results[0]  # get the closest source.
            image.classification = dbs.get_closest_phoenix_models(
                db_address, results['Fe_H_Teff'], results['Fe_H_log_g'])[0]
            # note that we always assume the proper motions are in mas/yr... which they should be.
            if results['PMRA'] is not np.ma.masked:
                image.pm_ra, image.pm_dec = results['PMRA'], results['PMDEC']
            # Update the ra and dec to the catalog coordinates as those will be consistent across observations.
            # Simbad always returns h:m:s, d:m:s, for ra, dec. If for some reason simbad does not, these coords will be
            # very wrong and barycenter correction will be very wrong.
            coord = SkyCoord(results['RA'],
                             results['DEC'],
                             unit=(units.hourangle, units.deg))
            image.ra, image.dec = coord.ra.deg, coord.dec.deg
Exemplo n.º 10
0
from banzai import settings, logs
from banzai import logs
from banzai import dbs
from banzai.images import logger
from banzai.munge import munge
from banzai.utils.fits_utils import get_primary_header
from banzai.utils.instrument_utils import instrument_passes_criteria
from banzai.utils import import_utils
from banzai.exceptions import InhomogeneousSetException


logger = logging.getLogger('banzai')


FRAME_CLASS = import_utils.import_attribute(settings.FRAME_CLASS)


def get_obstype(header):
    return header.get('OBSTYPE', None)


def get_reduction_level(header):
    return header.get('RLEVEL', '00')


def select_images(image_list, image_type, db_address, ignore_schedulability):
    images = []
    for filename in image_list:
        try:
            header = get_primary_header(filename)
Exemplo n.º 11
0
import logging
import abc
import os

import numpy as np
from astropy.io import fits

from banzai.stages import Stage, MultiFrameStage
from banzai import dbs, logs, settings
from banzai.utils import image_utils, stats, fits_utils, qc, date_utils, import_utils, file_utils
import datetime

FRAME_CLASS = import_utils.import_attribute(settings.FRAME_CLASS)

logger = logging.getLogger('banzai')


class CalibrationMaker(MultiFrameStage):
    def __init__(self, runtime_context):
        super(CalibrationMaker, self).__init__(runtime_context)

    def group_by_attributes(self):
        return settings.CALIBRATION_SET_CRITERIA.get(
            self.calibration_type.upper(), [])

    @property
    @abc.abstractmethod
    def calibration_type(self):
        pass

    @abc.abstractmethod