Exemplo n.º 1
0
 def on_keypress_smooth(self, event):
     """ Smooth the flux with a gaussian. Requires attributes
     self.fl and self.nsmooth, self.artists['fl'] and self.fig."""
     if event.key == 'S':
         if self.nsmooth > 0:
             self.nsmooth += 0.5
         else:
             self.nsmooth = 1
         sfl = convolve_psf(self.fl, self.nsmooth)
         self.artists['fl'].set_ydata(sfl)
         self.fig.canvas.draw()
     elif event.key == 'U':
         self.nsmooth = 0
         self.artists['fl'].set_ydata(self.fl)
         self.fig.canvas.draw()
Exemplo n.º 2
0
 def on_keypress_smooth(self, event):
     """ Smooth the flux with a gaussian. Requires attributes
     self.fl and self.nsmooth, self.artists['fl'] and self.fig."""
     if event.key == 'S':
         if self.nsmooth > 0:
             self.nsmooth += 0.5
         else:
             self.nsmooth = 1
         sfl = convolve_psf(self.fl, self.nsmooth)
         self.artists['fl'].set_ydata(sfl)
         self.fig.canvas.draw()
     elif event.key == 'U':
         self.nsmooth = 0
         self.artists['fl'].set_ydata(self.fl)
         self.fig.canvas.draw()
Exemplo n.º 3
0
    def get_new_spec(self, i):
        """ Change to a new spectrum
        """
        self.i = i
        filename = self.filenames[i]
        if self.spec[i] is None:
            print 'Reading %s' % filename
            self.spec[i] = barak.spec.read(filename)
            self.models[i] = None
            self.ticks = None
            if self.opt.f26 is not None:
                self.calc_model()

        s = self.spec[i]
        self.ax.cla()
        co = s.co
        if self.opt.co_is_sky:
            co = s.co * np.median(s.fl) / np.median(s.co) * 0.1
        self.artists['spec'] = barak.spec.plot(
            s.wa, s.fl, s.er, co, ax=self.ax, show=0, yperc=0.90)
        self.artists['fl'] = self.artists['spec'][0]
        self.artists['co'] = self.artists['spec'][2]
        if self.nsmooth > 0:
            sfl = convolve_psf(s.fl, self.nsmooth, edge='reflect')
            self.artists['fl'].set_data(s.wa, sfl)
        self.artists['template'], = self.ax.plot([], [], 'y')
        self.artists['contpoints'], = self.ax.plot(
            [0], [0], 'x', mfc='None', mew=0.5, ms=8, mec='r')

        line_artists = barak.spec.plotlines(
            self.zp1-1, self.ax, labels=1, fontsize=10, lcolor='0.3',
            offsets=False)

        self.artists['lines'] = line_artists

        self.fl = s.fl
        self.wa = s.wa
        self.co = co
        self.name = self.filenames[i]
Exemplo n.º 4
0
fnu = np.log10(X**alpha)
ind = X.searchsorted(0.99)
ax2.semilogx(X, fnu - fnu[ind] + N0, '--c', lw=2,
             label=r'$J_\nu\propto\ \nu^{%.3g}$' % alpha)


# plot the starburst spectrum
x = (starburst.wa * u.AA).to(u.rydberg, equivalencies=u.equivalencies.spectral())
x = x.value
X = x[::-1]
F = starburst.logfnu[::-1]
ind = X.searchsorted(1.02)

from barak.convolve import convolve_psf

ax2.semilogx(X, convolve_psf(F - F[ind] + N0,50), 'r', lw=2,
             label='$\mathrm{starburst}$')

# apply dust extinction

from barak.extinction import starburst_Calzetti00
ext = starburst_Calzetti00(starburst.wa, EBmV=0.2)
Fnu = np.log10(10**starburst.logfnu * np.exp(-ext.tau))
F = Fnu[::-1]
ax2.semilogx(X, convolve_psf(F - F[ind] + N0, 50), 'r', lw=0.5,
             label='$\mathrm{starburst},\ E(B-V)=0.2$')

ax2.legend(frameon=0, loc='lower left', fontsize=12)
#plt.grid(ls='solid', lw=0.5, color='0.7')
xvals = (IP * u.eV).to(u.Ry).value
Exemplo n.º 5
0
    def update(self, z):
        if self.opt.f26 is not None:
            wa, nfl, ner, nco, model, artists, options = (self.wa, self.nfl,
                                                          self.ner, self.co,
                                                          self.model,
                                                          self.artists,
                                                          self.opt)
        else:
            wa, nfl, ner, nco, artists, options = (self.wa, self.nfl, self.ner,
                                                   self.co, self.artists,
                                                   self.opt)

        self.z = z

        ymult = self.ymult

        zp1 = z + 1
        betamin = self.vmin / c_kms
        betamax = self.vmax / c_kms

        for t in artists['ticklabels']:
            t.remove()
        for t in artists['ticks']:
            t.remove()
        artists['ticklabels'] = []
        artists['ticks'] = []
        if artists['ew'] is not None:
            artists['ew'].remove()
            artists['ew'] = None

        for r in artists['regions']:
            r.remove()
        for s in artists['sky']:
            s.remove()
        for s in artists['aod']:
            s.remove()
        artists['regions'] = []
        artists['sky'] = []
        artists['aod'] = []

        # want plots to appear from  top down, so we need reversed()
        for i, trans in enumerate(reversed(options.linelist)):
            atom, ion = split_trans_name(trans['name'].split()[0])
            iax, ioff = divmod(i, self.num_per_panel)
            ax = self.axes[iax]
            offset = ioff * 1.5
            #if i >= self.num_per_panel:
            #    offset = (i - self.num_per_panel) * 1.5
            #    ax = self.axes[1]

            watrans = trans['wa']
            obswa = watrans * zp1
            wmin = obswa * (1 + 3 * betamin)
            wmax = obswa * (1 + 3 * betamax)
            if self.opt.showticks and len(self.allticks) > 0:
                ticks = self.allticks
                tickwmin = obswa * (1 + betamin)
                tickwmax = obswa * (1 + betamax)
                wticks = ticks.wa
                cond = between(wticks, tickwmin, tickwmax)
                if cond.any():
                    vel = (wticks[cond] / obswa - 1) * c_kms
                    for j, t in enumerate(ticks[cond]):
                        T, Tlabels = plot_tick_vel(ax,
                                                   vel[j],
                                                   offset,
                                                   t,
                                                   tickz=options.tickz)
                        artists['ticklabels'].extend(Tlabels)
                        artists['ticks'].extend(T)

            cond = between(wa, wmin, wmax)
            #good = ~np.isnan(fl) & (er > 0) & ~np.isnan(co)

            # remove ultra-low S/N regions to help plotting
            cond &= ner < 1.5
            cond &= ymult * (nfl - 1) + 1 > -0.1

            fl = nfl[cond]
            co = nco[cond]

            vel = (wa[cond] / obswa - 1) * c_kms

            if options.f26 is not None and options.f26.regions is not None:
                artists['regions'].extend(
                    plot_velocity_regions(wmin, wmax, options.f26.regions.wmin,
                                          options.f26.regions.wmax, obswa, ax,
                                          offset, vel,
                                          ymult * (fl - 1) + 1))

            #import pdb; pdb.set_trace()
            if hasattr(options, 'aod'):
                # print ranges used for AOD calculation.
                # find the right transition
                c0 = ((np.abs(options.aod['wrest'] - trans['wa']) < 0.01) &
                      (options.aod['atom'] == atom))
                itrans = np.flatnonzero(c0)
                for row in options.aod[itrans]:
                    c0 = between(wa[cond], row['wmin'], row['wmax'])
                    if np.any(c0):
                        artists['aod'].append(
                            ax.fill_between(vel[c0],
                                            offset,
                                            offset + 1.5,
                                            facecolor='0.8',
                                            lw=0,
                                            zorder=0))

            vranges = []
            for w0, w1 in unrelated:
                c0 = between(wa[cond], w0, w1)
                if c0.any():
                    vranges.append(c0)

            for w0, w1 in ATMOS:
                c0 = between(wa[cond], w0, w1)
                if c0.any():
                    artists['sky'].append(
                        ax.fill_between(vel[c0],
                                        offset,
                                        offset + 1.5,
                                        facecolor='0.9',
                                        lw=0))

            if self.smoothby > 1:
                if len(fl) > 3 * self.smoothby:
                    fl = convolve_psf(fl, self.smoothby)

            artists['fl'][i].set_xdata(vel)
            artists['fl'][i].set_ydata(ymult * (fl - 1) + 1 + offset)

            artists['co'][i].set_xdata(vel)
            artists['co'][i].set_ydata(ymult * (co - 1) + 1 + offset)

            #pdb.set_trace()

            if self.opt.residuals:
                resid = (fl - model[cond]) / ner[cond]
                c0 = np.abs(resid) < 5
                artists['resid'][i].set_xdata(vel[c0])
                artists['resid'][i].set_ydata(resid[c0] * 0.05 + offset - 0.1)

            if self.opt.f26 is not None:
                artists['model'][i].set_xdata(vel)
                artists['model'][i].set_ydata(ymult * (model[cond] - 1) + 1 +
                                              offset)

            tr_id = trans['name'], tuple(trans['tr'])
            #import pdb; pdb.set_trace()
            art = self.artists['models'][tr_id]
            for line in self.models:
                m = self.models[line]
                if line not in art:
                    art[line] = ax.plot(vel,
                                        ymult * (m[cond] - 1) + 1 + offset,
                                        'k',
                                        lw=0.2)[0]
                else:
                    art[line].set_xdata(vel)
                    art[line].set_ydata(ymult * (m[cond] - 1) + 1 + offset)

        for ax in self.axes:
            ax.set_xlim(self.vmin, self.vmax)
            ax.set_ylim(-0.5, self.num_per_panel * 1.5)
        self.artists['title'].set_text('$z = %.5f$' % self.z)

        if not self.opt.ticklabels:
            for t in artists['ticklabels']:
                t.set_visible(False)

        self.fig.canvas.draw()

        self.artists = artists
Exemplo n.º 6
0
             '--c',
             lw=2,
             label=r'$J_\nu\propto\ \nu^{%.3g}$' % alpha)

# plot the starburst spectrum
x = (starburst.wa * u.AA).to(u.rydberg,
                             equivalencies=u.equivalencies.spectral())
x = x.value
X = x[::-1]
F = starburst.logfnu[::-1]
ind = X.searchsorted(1.02)

from barak.convolve import convolve_psf

ax2.semilogx(X,
             convolve_psf(F - F[ind] + N0, 50),
             'r',
             lw=2,
             label='$\mathrm{starburst}$')

# apply dust extinction

from barak.extinction import starburst_Calzetti00
ext = starburst_Calzetti00(starburst.wa, EBmV=0.2)
Fnu = np.log10(10**starburst.logfnu * np.exp(-ext.tau))
F = Fnu[::-1]
ax2.semilogx(X,
             convolve_psf(F - F[ind] + N0, 50),
             'r',
             lw=0.5,
             label='$\mathrm{starburst},\ E(B-V)=0.2$')
Exemplo n.º 7
0
    def update(self, z):
        if self.opt.f26 is not None:
            wa, nfl, ner, nco, model, artists, options = (
                self.wa, self.nfl, self.ner, self.co, self.model,
                self.artists, self.opt)
        else:
            wa, nfl, ner, nco, artists, options = (
                self.wa, self.nfl, self.ner, self.co,
                self.artists, self.opt)

        self.z = z

        zp1 = z + 1
        betamin = self.vmin / c_kms
        betamax = self.vmax / c_kms

        for t in artists['ticklabels']:
            t.remove()
        for t in artists['ticks']:
            t.remove()
        artists['ticklabels'] = []
        artists['ticks'] = []
        if artists['ew'] is not None:
            artists['ew'].remove()
            artists['ew'] = None
        for r in artists['regions']:
            r.remove()
        for s in artists['sky']:
            s.remove()
        artists['regions'] = []
        artists['sky'] = []

        # want plots to appear from  top down, so we need reversed()
        for i, trans in enumerate(reversed(options.linelist)):
            ax = self.axes[0]
            offset = i * 1.5
            if i >= self.num_per_panel:
                offset = (i - self.num_per_panel) * 1.5
                ax = self.axes[1]

            watrans = trans['wa']
            obswa = watrans * zp1
            wmin = obswa * (1 + 3*betamin)
            wmax = obswa * (1 + 3*betamax)
            if self.opt.showticks and len(self.allticks) > 0:
                ticks = self.allticks
                tickwmin = obswa * (1 + betamin)
                tickwmax = obswa * (1 + betamax)
                wticks = ticks.wa
                cond = between(wticks, tickwmin, tickwmax)
                if cond.any():
                    vel = (wticks[cond] / obswa - 1) * c_kms
                    for j,t in enumerate(ticks[cond]):
                        T,Tlabels = plot_tick_vel(ax, vel[j], offset, t,
                                                  tickz=options.tickz)
                        artists['ticklabels'].extend(Tlabels)
                        artists['ticks'].extend(T)
            if options.f26 is not None and options.f26.regions is not None:
                artists['regions'].extend(plot_velocity_regions(
                    wmin, wmax, options.f26.regions.wmin,
                    options.f26.regions.wmax,
                    obswa, ax, offset))

            cond = between(wa, wmin, wmax)
            #good = ~np.isnan(fl) & (er > 0) & ~np.isnan(co)

            # remove ultra-low S/N regions to help plotting
            cond &= ner < 1.5
                
            fl = nfl[cond]
            co = nco[cond]

            vel = (wa[cond] / obswa - 1) * c_kms
            vranges = []
            for w0, w1 in unrelated:
                c0 = between(wa[cond], w0, w1)
                if c0.any():
                    vranges.append(c0)

            for w0, w1 in ATMOS:
                c0 = between(wa[cond], w0, w1)
                if c0.any():
                    artists['sky'].append(
                        ax.fill_between(vel[c0], offset,
                                        offset + 1.5, facecolor='0.9', lw=0))

            if self.smoothby > 1:
                if len(fl) > 3 * self.smoothby:
                    fl = convolve_psf(fl, self.smoothby)

            artists['fl'][i].set_xdata(vel)
            artists['fl'][i].set_ydata(fl + offset)

            artists['co'][i].set_xdata(vel)
            artists['co'][i].set_ydata(co + offset)

            #pdb.set_trace()

            if self.opt.residuals:
                resid = (fl - model[cond]) / ner[cond]
                c0 = np.abs(resid) < 5
                artists['resid'][i].set_xdata(vel[c0])
                artists['resid'][i].set_ydata(resid[c0] * 0.05 + offset - 0.1)

            if self.opt.f26 is not None:
                artists['model'][i].set_xdata(vel)
                artists['model'][i].set_ydata(model[cond] + offset)

        for ax in self.axes:
            ax.set_xlim(self.vmin, self.vmax)
            ax.set_ylim(-0.5, self.num_per_panel * 1.5)
        self.artists['title'].set_text('$z = %.5f$' % self.z)

        if not self.opt.ticklabels:
            for t in artists['ticklabels']:
                t.set_visible(False)

        self.fig.canvas.draw()

        self.artists = artists
Exemplo n.º 8
0
    def update(self, z):
        if self.opt.f26 is not None:
            wa, nfl, ner, nco, model, artists, options = (
                self.wa, self.nfl, self.ner, self.co, self.model,
                self.artists, self.opt)
        else:
            wa, nfl, ner, nco, artists, options = (
                self.wa, self.nfl, self.ner, self.co,
                self.artists, self.opt)

        self.z = z

        ymult = self.ymult

        zp1 = z + 1
        betamin = self.vmin / c_kms
        betamax = self.vmax / c_kms

        for t in artists['ticklabels']:
            t.remove()
        for t in artists['ticks']:
            t.remove()
        artists['ticklabels'] = []
        artists['ticks'] = []
        if artists['ew'] is not None:
            artists['ew'].remove()
            artists['ew'] = None


        for r in artists['regions']:
            r.remove()
        for s in artists['sky']:
            s.remove()
        for s in artists['aod']:
            s.remove()
        artists['regions'] = []
        artists['sky'] = []
        artists['aod'] = []

        # want plots to appear from  top down, so we need reversed()
        for i, trans in enumerate(reversed(options.linelist)):
            atom, ion = split_trans_name(trans['name'].split()[0])
            iax, ioff = divmod(i, self.num_per_panel)
            ax = self.axes[iax]
            offset = ioff * 1.5
            #if i >= self.num_per_panel:
            #    offset = (i - self.num_per_panel) * 1.5
            #    ax = self.axes[1]

            watrans = trans['wa']
            obswa = watrans * zp1
            wmin = obswa * (1 + 3*betamin)
            wmax = obswa * (1 + 3*betamax)
            if self.opt.showticks and len(self.allticks) > 0:
                ticks = self.allticks
                tickwmin = obswa * (1 + betamin)
                tickwmax = obswa * (1 + betamax)
                wticks = ticks.wa
                cond = between(wticks, tickwmin, tickwmax)
                if cond.any():
                    vel = (wticks[cond] / obswa - 1) * c_kms
                    for j,t in enumerate(ticks[cond]):
                        T,Tlabels = plot_tick_vel(ax, vel[j], offset, t,
                                                  tickz=options.tickz)
                        artists['ticklabels'].extend(Tlabels)
                        artists['ticks'].extend(T)


            cond = between(wa, wmin, wmax)
            #good = ~np.isnan(fl) & (er > 0) & ~np.isnan(co)

            # remove ultra-low S/N regions to help plotting
            cond &= ner < 1.5
            cond &= ymult*(nfl-1) + 1 > -0.1
                
            fl = nfl[cond]
            co = nco[cond]

            vel = (wa[cond] / obswa - 1) * c_kms

            if options.f26 is not None and options.f26.regions is not None:
                artists['regions'].extend(plot_velocity_regions(
                    wmin, wmax, options.f26.regions.wmin,
                    options.f26.regions.wmax,
                    obswa, ax, offset, vel, ymult*(fl-1) + 1))

            #import pdb; pdb.set_trace()
            if hasattr(options, 'aod'):
                # print ranges used for AOD calculation.
                # find the right transition
                c0 = ((np.abs(options.aod['wrest'] - trans['wa']) < 0.01) &
                      (options.aod['atom'] == atom))
                itrans = np.flatnonzero(c0)
                for row in options.aod[itrans]:
                    c0 = between(wa[cond], row['wmin'], row['wmax'])
                    if np.any(c0):
                        artists['aod'].append(
                            ax.fill_between(vel[c0], offset, offset+1.5, facecolor='0.8', lw=0,
                                            zorder=0)
                            )
                    

            vranges = []
            for w0, w1 in unrelated:
                c0 = between(wa[cond], w0, w1)
                if c0.any():
                    vranges.append(c0)

            for w0, w1 in ATMOS:
                c0 = between(wa[cond], w0, w1)
                if c0.any():
                    artists['sky'].append(
                        ax.fill_between(vel[c0], offset,
                                        offset + 1.5, facecolor='0.9', lw=0))

            if self.smoothby > 1:
                if len(fl) > 3 * self.smoothby:
                    fl = convolve_psf(fl, self.smoothby)


            artists['fl'][i].set_xdata(vel)
            artists['fl'][i].set_ydata(ymult*(fl-1) + 1 + offset)

            artists['co'][i].set_xdata(vel)
            artists['co'][i].set_ydata(ymult*(co-1) + 1 + offset)

            #pdb.set_trace()

            if self.opt.residuals:
                resid = (fl - model[cond]) / ner[cond]
                c0 = np.abs(resid) < 5
                artists['resid'][i].set_xdata(vel[c0])
                artists['resid'][i].set_ydata(resid[c0] * 0.05 + offset - 0.1)

            if self.opt.f26 is not None:
                artists['model'][i].set_xdata(vel)
                artists['model'][i].set_ydata(ymult*(model[cond]-1) + 1 + offset)

            tr_id = trans['name'], tuple(trans['tr'])
            #import pdb; pdb.set_trace()
            art = self.artists['models'][tr_id]
            for line in self.models:                
                m  = self.models[line]
                if line not in art:
                    art[line] = ax.plot(vel, ymult*(m[cond]-1) + 1 + offset, 'k', lw=0.2)[0]
                else:
                    art[line].set_xdata(vel)
                    art[line].set_ydata(ymult*(m[cond]-1) + 1 + offset)

        for ax in self.axes:
            ax.set_xlim(self.vmin, self.vmax)
            ax.set_ylim(-0.5, self.num_per_panel * 1.5)
        self.artists['title'].set_text('$z = %.5f$' % self.z)

        if not self.opt.ticklabels:
            for t in artists['ticklabels']:
                t.set_visible(False)

        self.fig.canvas.draw()

        self.artists = artists
Exemplo n.º 9
0
Arquivo: Lya_plot.py Projeto: nhmc/H2
    # comoponents in wings?
    npix = 1.39 / dw * 0.8

    tau, ticks = find_tau(wa, lines, atom)
    taulo, ticks = find_tau(wa, lineslo, atom)
    tauhi, ticks = find_tau(wa, lineshi, atom)

    fig = pl.figure(figsize=(4.3, 3))
    fig.subplots_adjust(bottom=0.16, left=0.16, right=0.98, top=0.96)


    ax = fig.add_subplot(111)

    ax.plot(wa, sp.fl,color='0.3', lw=0.5,drawstyle='steps-mid')
    ax.plot(wa, sp.co, '0.7', ls='dashed')
    ax.plot(wa, sp.co*convolve_psf(np.exp(-taulo), npix), 'r', lw=0.3)
    ax.plot(wa, sp.co*convolve_psf(np.exp(-tau), npix), 'r')
    ax.plot(wa, sp.co*convolve_psf(np.exp(-tauhi), npix), 'r', lw=0.3)
    ax.axhline(0, color='k', lw=0.3)
    ax.minorticks_on()
    ax.set_xlim(1881, 1904.9)
    #ax.set_xlim(1861, 1924.9)
    ymax = 3.49
    resid = (sp.fl - sp.co*convolve_psf(np.exp(-tau), npix)) / sp.er
    ax.axhline((-0.12-0.03)*ymax, color='0.7', lw=0.5)
    ax.axhline((-0.12+0.03)*ymax, color='0.7', lw=0.5)
    ax.scatter(wa, -0.12*ymax + 0.03*ymax*resid, c='g', marker='.', s=20,
               faceted=False)
    ax.set_ylim(-0.22*ymax, ymax)
    ax.set_xlabel('$\mathrm{Wavelength}\ (\AA)$')
    pl.figtext(0.012, 0.55,