Exemplo n.º 1
0
 def test_add_ego_agent(self):
     params = ParameterServer()
     env = self.create_runtime_and_setup_empty_world(params)
     state = np.array([0, 0, 0, 0, 0, 0])
     goal_line = Line2d(np.array([[0., 0.], [1., 1.]]))
     env.addEgoAgent(state, goal_line)
     self.assertTrue(np.array_equal(env.ego_agent.state, state))
Exemplo n.º 2
0
def make_initial_world(primitives):
    # must be within examples params folder
    params = ParameterServer()
    world = World(params)

    # Define two behavior models
    behavior_model = BehaviorMPContinuousActions(params)
    primitive_mapping = {}
    for prim in primitives:
        idx = behavior_model.AddMotionPrimitive(
            np.array(prim))  # adding action
        primitive_mapping[idx] = prim

    behavior_model.ActionToBehavior(0)  # setting initial action

    execution_model = ExecutionModelInterpolate(params)
    dynamic_model = SingleTrackModel(params)

    behavior_model2 = BehaviorConstantVelocity(params)
    execution_model2 = ExecutionModelInterpolate(params)
    dynamic_model2 = SingleTrackModel(params)

    # Define the map interface and load a testing map
    map_interface = MapInterface()
    xodr_map = MakeXodrMapOneRoadTwoLanes()
    map_interface.SetOpenDriveMap(xodr_map)
    world.SetMap(map_interface)

    # Define the agent shapes
    agent_2d_shape = CarRectangle()
    init_state = np.array([0, 3, -5.25, 0, 20])

    # Define the goal definition for agents
    center_line = Line2d()
    center_line.AddPoint(Point2d(0.0, -1.75))
    center_line.AddPoint(Point2d(100.0, -1.75))

    max_lateral_dist = (0.4, 0.5)
    max_orientation_diff = (0.08, 0.1)
    velocity_range = (5.0, 20.0)
    goal_definition = GoalDefinitionStateLimitsFrenet(center_line,
                                                      max_lateral_dist,
                                                      max_orientation_diff,
                                                      velocity_range)

    # define two agents with the different behavior models
    agent_params = params.AddChild("agent1")
    agent = Agent(init_state, behavior_model, dynamic_model, execution_model,
                  agent_2d_shape, agent_params, goal_definition, map_interface)
    world.AddAgent(agent)

    init_state2 = np.array([0, 25, -5.25, 0, 15])
    agent2 = Agent(init_state2, behavior_model2, dynamic_model2,
                   execution_model2, agent_2d_shape, agent_params,
                   goal_definition, map_interface)
    world.AddAgent(agent2)

    return world
Exemplo n.º 3
0
    def test_append_to_scenario_history(self):
        params = ParameterServer()
        env = self.create_runtime_and_setup_empty_world(params)

        # behavior_model = BehaviorSACAgent(environment=env, params=params)
        behavior_model = bark.core.models.behavior.BehaviorConstantAcceleration(
            params)

        env.ml_behavior = behavior_model
        state = np.array([0, 0, 0, 0, 0])
        goal_line = Line2d(np.array([[0., 0.], [1., 1.]]))
        env.addEgoAgent(state, goal_line)
        scenario = env.getScenarioForSerialization()
        self.assertTrue(isinstance(scenario, Scenario))
Exemplo n.º 4
0
    def test_generate_ego_trajectory_with_IDM(self):
        params = ParameterServer()
        env = self.create_runtime_and_setup_empty_world(params)
        env.ml_behavior = BehaviorIDMClassic(params)

        # add ego
        state = np.array([0, 0, 0, 0, 0])
        goal_line = Line2d(np.array([[0., 0.], [1., 1.]]))
        env.addEgoAgent(state, goal_line)

        N = 10
        state_traj, action_traj = env.generateTrajectory(0.2, N)
        env._viewer.drawTrajectory(state_traj)
        env.render()
        self.assertEqual(len(state_traj), N)
Exemplo n.º 5
0
    def test_one_agent_at_goal_state_limits_frenet(self):
        param_server = ParameterServer()
        # Model Definition
        behavior_model = BehaviorConstantVelocity(param_server)
        execution_model = ExecutionModelInterpolate(param_server)
        dynamic_model = SingleTrackModel(param_server)

        # Agent Definition
        agent_2d_shape = CarLimousine()
        agent_params = param_server.AddChild("agent1")

        center_line = Line2d()
        center_line.AddPoint(Point2d(5.0, 5.0))
        center_line.AddPoint(Point2d(10.0, 10.0))
        center_line.AddPoint(Point2d(20.0, 10.0))

        max_lateral_dist = (0.4, 1)
        max_orientation_diff = (0.08, 0.1)
        velocity_range = (20.0, 25.0)
        goal_definition = GoalDefinitionStateLimitsFrenet(
            center_line, max_lateral_dist, max_orientation_diff,
            velocity_range)

        # not at goal x,y, others yes
        agent1 = Agent(np.array([0, 6, 8, 3.14 / 4.0, velocity_range[0]]),
                       behavior_model, dynamic_model, execution_model,
                       agent_2d_shape, agent_params, goal_definition, None)

        # at goal x,y and others
        agent2 = Agent(np.array([0, 5.0, 5.5, 3.14 / 4.0, velocity_range[1]]),
                       behavior_model, dynamic_model, execution_model,
                       agent_2d_shape, agent_params, goal_definition, None)

        # not at goal x,y,v yes but not orientation
        agent3 = Agent(
            np.array(
                [0, 5, 5.5, 3.14 / 4.0 + max_orientation_diff[1] + 0.001,
                 20]), behavior_model, dynamic_model, execution_model,
            agent_2d_shape, agent_params, goal_definition, None)

        # not at goal x,y, orientation but not v
        agent4 = Agent(
            np.array([
                0, 5, 4.5, 3.14 / 4 - max_orientation_diff[0],
                velocity_range[0] - 0.01
            ]), behavior_model, dynamic_model, execution_model, agent_2d_shape,
            agent_params, goal_definition, None)

        # at goal x,y, at lateral limit
        agent5 = Agent(
            np.array([
                0, 15, 10 - max_lateral_dist[0] + 0.05, 0, velocity_range[1]
            ]), behavior_model, dynamic_model, execution_model, agent_2d_shape,
            agent_params, goal_definition, None)

        # not at goal x,y slightly out of lateral limit
        agent6 = Agent(
            np.array([
                0, 15, 10 + max_lateral_dist[0] + 0.05,
                3.14 / 4 + max_orientation_diff[0], velocity_range[0]
            ]), behavior_model, dynamic_model, execution_model, agent_2d_shape,
            agent_params, goal_definition, None)

        # not at goal x,y,v yes but not orientation
        agent7 = Agent(
            np.array(
                [0, 5, 5.5, 3.14 / 4.0 - max_orientation_diff[0] - 0.001,
                 20]), behavior_model, dynamic_model, execution_model,
            agent_2d_shape, agent_params, goal_definition, None)

        world = World(param_server)
        world.AddAgent(agent1)
        world.AddAgent(agent2)
        world.AddAgent(agent3)
        world.AddAgent(agent4)
        world.AddAgent(agent5)
        world.AddAgent(agent6)
        world.AddAgent(agent7)

        evaluator1 = EvaluatorGoalReached(agent1.id)
        evaluator2 = EvaluatorGoalReached(agent2.id)
        evaluator3 = EvaluatorGoalReached(agent3.id)
        evaluator4 = EvaluatorGoalReached(agent4.id)
        evaluator5 = EvaluatorGoalReached(agent5.id)
        evaluator6 = EvaluatorGoalReached(agent6.id)
        evaluator7 = EvaluatorGoalReached(agent7.id)
        world.AddEvaluator("success1", evaluator1)
        world.AddEvaluator("success2", evaluator2)
        world.AddEvaluator("success3", evaluator3)
        world.AddEvaluator("success4", evaluator4)
        world.AddEvaluator("success5", evaluator5)
        world.AddEvaluator("success6", evaluator6)
        world.AddEvaluator("success7", evaluator7)

        info = world.Evaluate()
        self.assertEqual(info["success1"], False)
        self.assertEqual(info["success2"], True)
        self.assertEqual(info["success3"], False)
        self.assertEqual(info["success4"], False)
        self.assertEqual(info["success5"], True)
        self.assertEqual(info["success6"], False)
        self.assertEqual(info["success7"], False)
Exemplo n.º 6
0
    def test_python_behavior_model(self):
        # World Definition
        scenario_param_file = "macro_actions_test.json"  # must be within examples params folder
        params = ParameterServer(filename=os.path.join(
            os.path.dirname(__file__), "params/", scenario_param_file))

        world = World(params)

        # Define two behavior models one python one standard c++ model
        behavior_model = PythonDistanceBehavior(params)
        execution_model = ExecutionModelInterpolate(params)
        dynamic_model = SingleTrackModel(params)

        behavior_model2 = BehaviorConstantAcceleration(params)
        execution_model2 = ExecutionModelInterpolate(params)
        dynamic_model2 = SingleTrackModel(params)

        # Define the map interface and load a testing map
        map_interface = MapInterface()
        xodr_map = MakeXodrMapOneRoadTwoLanes()
        map_interface.SetOpenDriveMap(xodr_map)
        world.SetMap(map_interface)

        # Define the agent shapes
        agent_2d_shape = CarRectangle()
        init_state = np.array([0, 3, -5.25, 0, 20])

        # Define the goal definition for agents
        center_line = Line2d()
        center_line.AddPoint(Point2d(0.0, -1.75))
        center_line.AddPoint(Point2d(100.0, -1.75))

        max_lateral_dist = (0.4, 0.5)
        max_orientation_diff = (0.08, 0.1)
        velocity_range = (5.0, 20.0)
        goal_definition = GoalDefinitionStateLimitsFrenet(
            center_line, max_lateral_dist, max_orientation_diff,
            velocity_range)

        # define two agents with the different behavior models
        agent_params = params.AddChild("agent1")
        agent = Agent(init_state, behavior_model, dynamic_model,
                      execution_model, agent_2d_shape, agent_params,
                      goal_definition, map_interface)
        world.AddAgent(agent)

        init_state2 = np.array([0, 25, -5.25, 0, 15])
        agent2 = Agent(init_state2, behavior_model2, dynamic_model2,
                       execution_model2, agent_2d_shape, agent_params,
                       goal_definition, map_interface)
        world.AddAgent(agent2)

        # viewer
        viewer = MPViewer(params=params, use_world_bounds=True)

        # World Simulation
        sim_step_time = params["simulation"]["step_time",
                                             "Step-time in simulation", 0.2]
        sim_real_time_factor = params["simulation"][
            "real_time_factor", "execution in real-time or faster", 1]

        # Draw map
        video_renderer = VideoRenderer(renderer=viewer,
                                       world_step_time=sim_step_time)

        for _ in range(0, 20):
            world.Step(sim_step_time)
            viewer.clear()
            video_renderer.drawWorld(world)
            video_renderer.drawGoalDefinition(goal_definition, "red", 0.5,
                                              "red")
            time.sleep(sim_step_time / sim_real_time_factor)

        video_renderer.export_video(filename="./test_video_intermediate",
                                    remove_image_dir=True)
Exemplo n.º 7
0
    def test_uct_single_agent(self):
        try:
            from bark.core.models.behavior import BehaviorUCTSingleAgentMacroActions
        except:
            print("Rerun with --define planner_uct=true")
            return
        # World Definition
        scenario_param_file = "macro_actions_test.json"  # must be within examples params folder
        params = ParameterServer(filename=os.path.join(
            os.path.dirname(__file__), "params/", scenario_param_file))

        world = World(params)

        # Model Definitions
        behavior_model = BehaviorUCTSingleAgentMacroActions(params)
        execution_model = ExecutionModelInterpolate(params)
        dynamic_model = SingleTrackModel(params)

        behavior_model2 = BehaviorConstantAcceleration(params)
        execution_model2 = ExecutionModelInterpolate(params)
        dynamic_model2 = SingleTrackModel(params)

        # Map Definition
        map_interface = MapInterface()
        xodr_map = MakeXodrMapOneRoadTwoLanes()
        map_interface.SetOpenDriveMap(xodr_map)
        world.SetMap(map_interface)

        # agent_2d_shape = CarLimousine()
        agent_2d_shape = CarRectangle()
        init_state = np.array([0, 3, -5.25, 0, 20])
        agent_params = params.AddChild("agent1")

        # goal_polygon = Polygon2d(
        #     [1, 1, 0], [Point2d(0, 0), Point2d(0, 2), Point2d(2, 2), Point2d(2, 0)])
        # goal_definition = GoalDefinitionPolygon(goal_polygon)
        # goal_polygon = goal_polygon.Translate(Point2d(90, -2))

        center_line = Line2d()
        center_line.AddPoint(Point2d(0.0, -1.75))
        center_line.AddPoint(Point2d(100.0, -1.75))

        max_lateral_dist = (0.4, 0.5)
        max_orientation_diff = (0.08, 0.1)
        velocity_range = (5.0, 20.0)
        goal_definition = GoalDefinitionStateLimitsFrenet(
            center_line, max_lateral_dist, max_orientation_diff,
            velocity_range)

        agent = Agent(init_state, behavior_model, dynamic_model,
                      execution_model, agent_2d_shape, agent_params,
                      goal_definition, map_interface)
        world.AddAgent(agent)

        init_state2 = np.array([0, 25, -5.25, 0, 0])
        agent2 = Agent(init_state2, behavior_model2, dynamic_model2,
                       execution_model2, agent_2d_shape, agent_params,
                       goal_definition, map_interface)
        world.AddAgent(agent2)

        # viewer
        viewer = MPViewer(params=params, use_world_bounds=True)

        # World Simulation
        sim_step_time = params["simulation"]["step_time",
                                             "Step-time in simulation", 0.2]
        sim_real_time_factor = params["simulation"][
            "real_time_factor", "execution in real-time or faster", 1]

        # Draw map
        video_renderer = VideoRenderer(renderer=viewer,
                                       world_step_time=sim_step_time)

        for _ in range(0, 5):
            world.Step(sim_step_time)
            viewer.clear()
            video_renderer.drawWorld(world)
            video_renderer.drawGoalDefinition(goal_definition)
            time.sleep(sim_step_time / sim_real_time_factor)

        video_renderer.export_video(filename="./test_video_intermediate",
                                    remove_image_dir=True)