Exemplo n.º 1
0
import cv2
import base as bs
import numpy as np


def conv_to_gray(img):

    return (0.0722 * img[:, :, 0] + 0.7152 * img[:, :, 1] + 0.2126 * img[:, :, 2]).astype(np.uint8)


img = cv2.imread("imori.jpg").astype(np.float)
img_gray = conv_to_gray(img)
bs.show_img(img_gray)
Exemplo n.º 2
0
    H = hsv[..., 0]
    S = hsv[..., 1]
    V = hsv[..., 2]

    C = S
    H_ = H / 60.
    X = C * (1 - np.abs(H_ % 2 - 1))
    Z = np.zeros_like(H)

    vals = [[Z, X, C], [Z, C, X], [X, C, Z], [C, X, Z], [C, Z, X], [X, Z, C]]

    for i in range(6):
        ind = np.where((i <= H_) & (H_ < (i + 1)))
        out[..., 0][ind] = (V - C)[ind] + vals[i][0][ind]
        out[..., 1][ind] = (V - C)[ind] + vals[i][1][ind]
        out[..., 2][ind] = (V - C)[ind] + vals[i][2][ind]

    out[np.where(max_v == min_v)] = 0
    out = np.clip(out, 0, 1)
    out = (out * 255).astype(np.uint8)

    return out


img = cv2.imread("imori.jpg").astype(np.float)
#hsv = BGR2HSV(img)
hsv = rgb2hsv(img)
bs.show_img(hsv)

out = HSV2BGR(img, hsv)
bs.show_img(out)
Exemplo n.º 3
0
    out_v = np.clip(out_v, 0, 255)
    out_v = out_v[pad:pad + H, pad:pad + W].astype(np.uint8)
    out_h = np.clip(out_h, 0, 255)
    out_h = out_h[pad:pad + H, pad:pad + W].astype(np.uint8)

    return out_v, out_h


def pool2d(_img, w_size=8):
    out = img.copy()

    h, w, c = _img.shape
    nh = int(h / w_size)
    nw = int(w / w_size)
    for y in range(nh):
        for x in range(nw):
            for c_i in range(c):
                out[w_size * y:w_size * (y + 1), w_size * x:w_size * (x + 1),
                    c_i] = np.max(_img[w_size * y:w_size * (y + 1),
                                       w_size * x:w_size * (x + 1), c_i])

    return out


img = cv2.imread("imori.jpg")
img_gray = bs.conv_to_gray(img)
q_img_v, q_img_h = sobel_filter(img_gray)
bs.show_img(q_img_v)
bs.show_img(q_img_h)
Exemplo n.º 4
0
        for x in range(W):
            for c_i in range(C):
                out[pad + y, pad + x, c_i] = np.mean(tmp[y:y + K_size,
                                                         x:x + K_size, c_i])

    out = np.clip(out, 0, 255)
    out = out[pad:pad + H, pad:pad + W].astype(np.uint8)

    return out


def pool2d(_img, w_size=8):
    out = img.copy()

    h, w, c = _img.shape
    nh = int(h / w_size)
    nw = int(w / w_size)
    for y in range(nh):
        for x in range(nw):
            for c_i in range(c):
                out[w_size * y:w_size * (y + 1), w_size * x:w_size * (x + 1),
                    c_i] = np.max(_img[w_size * y:w_size * (y + 1),
                                       w_size * x:w_size * (x + 1), c_i])

    return out


img = cv2.imread("imori.jpg")
q_img = mean_filter(img)
bs.show_img(q_img)
Exemplo n.º 5
0

def Otsu_binarize(img):
    img = img.astype(np.float)
    thres_set = range(255)

    argmin_thr = 0
    max_sigma_b = None
    for thr in thres_set:
        c_1 = np.array(img[img <= thr])
        c_2 = np.array(img[img > thr])
        w_1 = len(c_1)
        w_2 = len(c_2)
        if (len(c_1) == 0 or len(c_2) == 0):
            continue
        else:
            tmp_sigma_b = w_1 * w_2 * np.power(np.mean(c_1) - np.mean(c_2),
                                               2) / np.power((w_1 + w_2), 2)
            if (max_sigma_b is None or max_sigma_b < tmp_sigma_b):
                argmin_thr = thr
                max_sigma_b = tmp_sigma_b

    return binarize(img.astype(np.uint8), argmin_thr), argmin_thr


img = cv2.imread("imori.jpg").astype(np.float)
img_gray = conv_to_gray(img)
img_bin, thr = Otsu_binarize(img_gray)
print("thr:", thr)
bs.show_img(img_bin)