@author: brummli
"""

import baseParser
import config_
from experiment import AutoencoderGWRExperiment
import nn_main
import gwr_main


def addExtraGWRArguments(parser):
    parser.add_argument("-gle", "--GWR_lengthExample", type=baseParser.check_positive, help='The number of frames to use', default=1) #TODO: change default
    parser.add_argument("-ghe", "--GWR_hopExample", type=baseParser.check_positive, help='The number of frames to advance per example', default=1) #TODO: change default
    parser.add_argument("-gmo", "--GWR_NNModelName", type=str, help='Specifies the feature extraction neural net by its file name', default=None)
    parser.add_argument("-el", "--extractionLayer", type=baseParser.check_positive_zero, help='Which layers output of the autoencoder will be used to extract a transformed representation', default=config_.extractionLayer)
    
    parser.set_defaults(modelType='GWR')

    return parser


if __name__ == '__main__':
    parser = baseParser.createBaseParser()
    nnParser = nn_main.addNNArguments(parser)
    gwrParser = gwr_main.addGWRArguments(nnParser)
    combinedParser = addExtraGWRArguments(gwrParser)
    fullParser = baseParser.addModeParsers(combinedParser)
    args = fullParser.parse_args()
    exp = AutoencoderGWRExperiment(args)
    args.func(args,exp)
Exemplo n.º 2
0
                          type=float,
                          help='Bla',
                          default=config_.epsilonB)
    GWRGroup.add_argument("-en",
                          "--epsilonN",
                          type=float,
                          help='Bla',
                          default=config_.epsilonN)
    GWRGroup.add_argument("-tb",
                          "--tauB",
                          type=float,
                          help="tau B",
                          default=config_.tauB)
    GWRGroup.add_argument("-tn",
                          "--tauN",
                          type=float,
                          help="tau N",
                          default=config_.tauN)

    parser.set_defaults(modelType='GWR')

    return parser


if __name__ == '__main__':
    parser = baseParser.createBaseParser()
    gwrParser = addGWRArguments(parser)
    fullParser = baseParser.addModeParsers(gwrParser)
    args = fullParser.parse_args()
    exp = GWRExperiment(args)
    args.func(args, exp)
Exemplo n.º 3
0
# -*- coding: utf-8 -*-
"""
Created on Mon Feb 19 13:21:06 2018

@author: brummli
"""

import baseParser
import config_
from experiment import KMeansExperiment

def addKMeansArguments(parser):
    KMeansGroup = parser.add_argument_group('KMeans', 'K-Means specific values')
    KMeansGroup.add_argument("-ncl", "--numCluster", type=baseParser.check_positive, help='Number of cluster for K-Means', default=config_.numCluster)
    KMeansGroup.add_argument("-pc", "--patience", type=baseParser.check_positive_zero, help='Number of iterations without improvement before stopping training', default=config_.patience)
    KMeansGroup.add_argument("-re", "--reassignment", type=float, help='Fraction when to reassign cluster centers', default=config_.reassignment) #TODO:description
    KMeansGroup.add_argument("-tol", "--tolerance", type=float, help='Improvement within tolerance is accepted as converged', default=config_.KMeans_tolerance)
    #KMeansGroup.add_argument("-b", "--batch_size", type=check_positive, help='The batch size used during training', default=config_.KMeans_batch_size) TODO: when we use separate files or parsers per algorithm
    
    parser.set_defaults(modelType='KMeans')

    return parser


if __name__ == '__main__':
    parser = baseParser.createBaseParser()
    kmeansParser = addKMeansArguments(parser)
    fullParser = baseParser.addModeParsers(kmeansParser)
    args = fullParser.parse_args()
    exp = KMeansExperiment(args)
    args.func(args,exp)
Exemplo n.º 4
0
# -*- coding: utf-8 -*-
"""
Created on Mon Feb 19 13:21:06 2018

@author: brummli
"""

import baseParser
import config_
from experiment import NNExperiment

def addNNArguments(parser):
    nnGroup = parser.add_argument_group('NN', 'Neural Net specific values')
    nnGroup.add_argument("-l", "--layers", type=baseParser.check_positive_zero, help='Number of layers in the neural net model', default=config_.layers) 
    nnGroup.add_argument("-hid", "--hiddenNodes", type=baseParser.check_positive, help='Number of hidden Units in each layer', default=config_.hiddenNodes)
    nnGroup.add_argument("-lr", "--learningRate", type=float, help='Initial learning rate', default=config_.lr)
    nnGroup.add_argument("-s", "--sigma", type=float, help='Width of gaussian noise added for denoising autoencoder', default=config_.sigma)
    
    parser.add_argument("modelType", help='defines the model type',choices=['RNN_AE','LSTM','FF','FF_AE','SEQ_AE','SEQ'])

    return parser


if __name__ == '__main__':
    parser = baseParser.createBaseParser()
    nnParser = addNNArguments(parser)
    fullParser = baseParser.addModeParsers(nnParser)
    args = fullParser.parse_args()
    exp = NNExperiment(args)
    args.func(args,exp)