Exemplo n.º 1
0
def create_model(embeddings, **kwargs):
    unif = kwargs['unif']

    if 'sess' not in kwargs:
        kwargs['sess'] = tf.Session()

    weight_initializer = tf.random_uniform_initializer(-unif, unif)
    with tf.variable_scope('Model', initializer=weight_initializer):
        lm = create_lang_model(BASELINE_LM_MODELS, embeddings, **kwargs)
    return lm
Exemplo n.º 2
0
def create_model(embeddings, **kwargs):
    lm = create_lang_model(BASELINE_LM_MODELS, embeddings, **kwargs)
    return lm
Exemplo n.º 3
0
def run(basedir=None,
        train_file=None,
        valid_file=None,
        dataset_key='tlm',
        embed_type='default',
        d_model=512,
        d_ff=2048,
        d_k=None,
        num_heads=8,
        num_layers=8,
        num_train_workers=4,
        nctx=256,
        file_type='json',
        batch_size=256,
        subword_model_file=None,
        subword_vocab_file=None,
        dropout=0.1,
        ffn_pdrop=0.0,
        layer_drop=0.0,
        lr_scheduler='cosine',
        lr_decay_steps=None,
        lr_decay_rate=None,
        lr_alpha=0.0,
        optim='adamw',
        lr=4.0e-4,
        clip=1.0,
        weight_decay=1.0e-2,
        epochs=32,
        restart_from=None,
        restart_tt=None,
        warmup_steps=10000,
        saves_per_epoch=10,
        mlm=True,
        preprocessed=True,
        rpr_k=[8],
        rpr_value_on=False,
        windowed_ra=False,
        device="cuda",
        distributed=False,
        local_rank=-1,
        extra_tokens=["[CLS]", "[MASK]"],
        do_early_stopping=False,
        model_type='transformer-mlm',
        modules=[],
        ra_type=None,
        transformer_type=None,
        **kwargs):
    if basedir is None:
        basedir = 'lm-{}-bpe-{}'.format(dataset_key, os.getpid())
    logging.basicConfig(
        level=logging.INFO if local_rank in [-1, 0] else logging.WARN)

    for module in modules:
        import_user_module(module)
    num_gpus = get_num_gpus_multiworker()
    distributed = distributed or num_gpus > 1
    logger.info(f"Using {num_gpus} GPUs in this job.")

    do_on_demand_masking = mlm and not preprocessed
    if do_on_demand_masking:
        logger.info(f"On-demand masking is turned on")
    if distributed:
        device, updated_local_rank = init_distributed(local_rank)
        local_rank = updated_local_rank

    if file_type == 'tfrecord':
        reader_type = 'tfrecord'
    elif preprocessed:
        reader_type = 'preprocessed'
    else:
        reader_type = 'lang'
    reader = MultiFileDatasetReader(src_nctx=nctx,
                                    model_file=subword_model_file,
                                    vocab_file=subword_vocab_file,
                                    file_type=file_type,
                                    reader_type=reader_type,
                                    record_keys=['x', 'y'] if mlm else ['x'],
                                    extra_tokens=extra_tokens)

    # This looks a bit funny but the streaming reader ignores our vocab and gives us the one from the subword_model
    # However, we do need to get counts from our dataset for validation so we can calculate the perplexity
    vocab = reader.build_vocab([valid_file])
    # If we are not using chars, then use 'x' for both input and output
    preproc_data = baseline.embeddings.load_embeddings(
        'x',
        dsz=d_model,
        known_vocab=vocab['x'],
        preserve_vocab_indices=True,
        embed_type=embed_type)
    vocabs = preproc_data['vocab']

    os.makedirs(basedir, exist_ok=True)
    # We want to make sure to save our input vocab into the basedir for reuse later
    write_json(vocabs, os.path.join(basedir, 'vocabs.json'))
    embeddings = {'x': preproc_data['embeddings']}
    logger.info("Loaded embeddings")

    train_set = reader.load(train_file, vocabs)
    valid_set = reader.load(valid_file,
                            vocabs,
                            distribute=False,
                            shuffle=False)

    train_loader = DataLoader(train_set,
                              batch_size=batch_size,
                              num_workers=num_train_workers)
    valid_loader = DataLoader(valid_set, batch_size=batch_size)
    logger.info("Loaded datasets")
    logger.info("Using embedding type [%s]", embed_type)

    if 'mlm' in model_type:
        mask_from = vocabs
        vocab_size = len(mask_from)
        mask_value = mask_from.get("[MASK]")
        if mask_value == -1:
            logger.error(
                "We could not find a suitable masking token in the vocab")
            return

    if len(rpr_k) == 0 or rpr_k[0] < 1:
        rpr_k = None
    elif len(rpr_k) == 1:
        rpr_k = None if rpr_k[0] == 0 else rpr_k[0]
    if ra_type != None and ra_type != 'shaw' and rpr_k is not None:
        print(
            f"Relative attention mismatch. You requested {ra_type} with rpr set.  Setting it to 0"
        )
        rpr_k = None

    model = create_lang_model(
        embeddings,
        hsz=d_model,
        nctx=nctx,  # Only for gMLP
        d_ff=d_ff,
        tie_weights=True,
        dropout=dropout,
        gpu=False,
        num_heads=num_heads,
        layers=num_layers,
        rpr_k=rpr_k,
        d_k=d_k,
        ffn_pdrop=ffn_pdrop,
        windowed_ra=windowed_ra,
        rpr_value_on=rpr_value_on,
        layer_drop=layer_drop,
        model_type=model_type,
        ra_type=ra_type,
        transformer_type=transformer_type,
        src_keys=['x'],
        tgt_key='x')
    model.to(device)

    loss_function = model.create_loss()
    loss_function.to(device)

    logger.info("Loaded model and loss")

    steps_per_epoch = len(train_loader) // num_gpus
    update_on = steps_per_epoch // saves_per_epoch
    report_on = max(10, update_on) // 10
    logger.info(
        f"Steps per epoch per GPU: {steps_per_epoch}. Saving checkpoint every {update_on} steps."
    )
    lr_decay = get_lr_decay(lr_scheduler,
                            lr,
                            steps_per_epoch,
                            epochs,
                            logger,
                            decay_steps=lr_decay_steps,
                            decay_rate=lr_decay_rate,
                            alpha=lr_alpha)
    linear_warmup = WarmupLinearSchedulerPyTorch(warmup_steps, lr=lr)
    lr_sched = CompositeLRScheduler(linear_warmup, lr_decay, lr=lr)

    global_step = 0
    start_epoch = 0
    if restart_from:

        if restart_from.endswith('npz'):
            load_tlm_npz(model, restart_from)
        else:
            model.load_state_dict(torch.load(restart_from))
        vec = restart_from.split("-")

        if restart_tt:
            tick_type = restart_tt
        else:
            tick_type = vec[-2]
        step_num = int(vec[-1].split(".")[0])
        if tick_type == 'epoch':
            start_epoch = step_num
            global_step = start_epoch * steps_per_epoch

        elif tick_type == 'step':
            start_epoch = step_num // steps_per_epoch
            global_step = step_num
        else:
            logger.warning(
                f"The previous tick was {step_num} but command-line specifies to ignore, setting to 0"
            )

        logger.info(
            "Restarting from a previous checkpoint %s.\n\tStarting at global_step=%d, epoch=%d",
            restart_from, global_step, start_epoch + 1)

    optimizer = OptimizerManager(model,
                                 global_step,
                                 optim=optim,
                                 lr=lr,
                                 lr_function=lr_sched,
                                 weight_decay=weight_decay)
    logger.info("Model has {:,} parameters".format(
        sum(p.numel() for p in model.parameters() if p.requires_grad)))

    # Prepare model for distributed training if needed
    if distributed:
        # This program assume pure data parallelism, each model is on a single gpu
        # If we wanted to support model and data parallelism we would need to update
        # the selection of gpus based on rank, it would need to select multiple ids
        # based on rank, here we select only a single gpu and use it for input and
        # output.
        model = DistributedDataParallel(model,
                                        device_ids=[device],
                                        output_device=device,
                                        find_unused_parameters=True)
        logger.info("Model located on %s", device)

    model_base = os.path.join(basedir, 'checkpoint')
    steps = global_step
    best_valid_loss = np.inf

    timer = Timer()
    for epoch in range(start_epoch, epochs):
        avg_loss = Average('average_train_loss')
        metrics = {}
        optimizer.zero_grad()
        timer.start()
        model.train()
        train_itr = iter(train_loader)
        for i in range(steps_per_epoch):
            batch = next(train_itr)
            steps += 1
            x, y = batch
            inputs = x.to(device)
            labels = y.to(device)
            if do_on_demand_masking:
                inputs, labels, _ = on_demand_mlm_masking(
                    inputs, labels, mask_value, vocab_size)
            inputs = {'x': inputs}

            labels = labels.contiguous()
            logits = model(inputs, None)[0].contiguous()
            if mlm:
                loss = loss_function(logits, labels)
            else:
                shift_logits = logits[:, -1]
                shift_labels = labels[:, 1:]
                loss = loss_function(shift_logits, shift_labels)
            loss.backward()
            avg_loss.update(loss.item())

            torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
            optimizer.step()
            optimizer.zero_grad()
            if (i + 1) % report_on == 0:
                logging.info(avg_loss)

            if (i + 1) % update_on == 0 and local_rank < 1:
                elapsed = timer.elapsed(True)
                logging.info('elapsed time this epoch %d min', elapsed)
                logging.info('elapsed step time %f steps/min', i / elapsed)
                logging.info('LR: %f', optimizer.current_lr)

                if not do_early_stopping:
                    save_checkpoint(model, model_base, steps, tick_type='step')
                else:
                    valid_token_loss = validate(model, loss_function,
                                                valid_loader, avg_loss, timer,
                                                metrics, do_on_demand_masking,
                                                mlm, mask_value, vocab_size,
                                                device)
                    if valid_token_loss < best_valid_loss:
                        best_valid_loss = valid_token_loss
                        logger.info(
                            f"New best valid loss: {best_valid_loss}. Saving checkpoint..."
                        )
                        save_checkpoint(model,
                                        model_base,
                                        steps,
                                        tick_type='step')
                    model.train()

        if not do_early_stopping:
            _ = validate(model, loss_function, valid_loader, avg_loss, timer,
                         metrics, do_on_demand_masking, mlm, mask_value,
                         vocab_size, device)
            save_checkpoint(model, model_base, epoch, tick_type='epoch')