Exemplo n.º 1
0
def set_layer_flat(old_var_list, var_list):
    dtype = tf.float32
    shapes = list(map(U.var_shape, old_var_list))
    total_size = np.sum([U.intprod(shape) for shape in shapes])

    theta = theta = tf.placeholder(dtype, [total_size])
    start = 0
    assigns = []
    for (shape, v) in zip(shapes, old_var_list):
        size = U.intprod(shape)
        assigns.append(tf.assign(v, tf.reshape(theta[start:start + size], shape)))
        start += size
    op = tf.group(*assigns)
    return tf.get_default_session().run(op, feed_dict={theta: var_list})
 def compute_fvp(self, flat_tangent, ob, ac, atarg):
     shapes = [var.get_shape().as_list() for var in self.pi_var_list]
     with tf.GradientTape() as outter_tape:
         with tf.GradientTape() as inner_tape:
             old_policy_latent = self.oldpi.policy_network(ob)
             old_pd, _ = self.oldpi.pdtype.pdfromlatent(old_policy_latent)
             policy_latent = self.pi.policy_network(ob)
             pd, _ = self.pi.pdtype.pdfromlatent(policy_latent)
             kloldnew = old_pd.kl(pd)
             meankl = tf.reduce_mean(kloldnew)
         klgrads = inner_tape.gradient(meankl, self.pi_var_list)
         start = 0
         tangents = []
         for shape in shapes:
             sz = U.intprod(shape)
             tangents.append(
                 tf.reshape(flat_tangent[start:start + sz], shape))
             start += sz
         gvp = tf.add_n([
             tf.reduce_sum(g * tangent)
             for (g, tangent) in zipsame(klgrads, tangents)
         ])
     hessians_products = outter_tape.gradient(gvp, self.pi_var_list)
     fvp = U.flatgrad(hessians_products, self.pi_var_list)
     return fvp
    def reshape_from_flat(self, flat_tangents):
        shapes = [var.get_shape().as_list() for var in self.pi_var_list]
        start = 0
        tangents = []
        for shape in shapes:
            sz = U.intprod(shape)
            tangents.append(tf.reshape(flat_tangents[start:start + sz], shape))
            start += sz

        return tangents
Exemplo n.º 4
0
def learn(env, policy_func, *,
        timesteps_per_batch, # what to train on
        max_kl, cg_iters,
        gamma, lam, # advantage estimation
        entcoeff=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters =3,
        max_timesteps=0, max_episodes=0, max_iters=0,  # time constraint
        callback=None
        ):
    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)    
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", ob_space, ac_space)
    oldpi = policy_func("oldpi", ob_space, ac_space)
    atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = U.mean(kloldnew)
    meanent = U.mean(ent)
    entbonus = entcoeff * meanent

    vferr = U.mean(tf.square(pi.vpred - ret))

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # advantage * pnew / pold
    surrgain = U.mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
    vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start+sz], shape))
        start += sz
    gvp = tf.add_n([U.sum(g*tangent) for (g, tangent) in zipsame(klgrads, tangents)]) #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv)
        for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables())])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(colorize("done in %.3f seconds"%(time.time() - tstart), color='magenta'))
        else:
            yield
    
    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi, env, timesteps_per_batch, stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards

    assert sum([max_iters>0, max_timesteps>0, max_episodes>0])==1

    while True:        
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************"%iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
        vpredbefore = seg["vpred"] # predicted value function before udpate
        atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate

        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy

        args = seg["ob"], seg["ac"], atarg
        fvpargs = [arr[::5] for arr in args]
        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        assign_old_eq_new() # set old parameter values to new parameter values
        with timed("computegrad"):
            *lossbefore, g = compute_lossandgrad(*args)
        lossbefore = allmean(np.array(lossbefore))
        g = allmean(g)
        if np.allclose(g, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with timed("cg"):
                stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=rank==0)
            assert np.isfinite(stepdir).all()
            shs = .5*stepdir.dot(fisher_vector_product(stepdir))
            lm = np.sqrt(shs / max_kl)
            # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
            fullstep = stepdir / lm
            expectedimprove = g.dot(fullstep)
            surrbefore = lossbefore[0]
            stepsize = 1.0
            thbefore = get_flat()
            for _ in range(10):
                thnew = thbefore + fullstep * stepsize
                set_from_flat(thnew)
                meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args)))
                improve = surr - surrbefore
                logger.log("Expected: %.3f Actual: %.3f"%(expectedimprove, improve))
                if not np.isfinite(meanlosses).all():
                    logger.log("Got non-finite value of losses -- bad!")
                elif kl > max_kl * 1.5:
                    logger.log("violated KL constraint. shrinking step.")
                elif improve < 0:
                    logger.log("surrogate didn't improve. shrinking step.")
                else:
                    logger.log("Stepsize OK!")
                    break
                stepsize *= .5
            else:
                logger.log("couldn't compute a good step")
                set_from_flat(thbefore)
            if nworkers > 1 and iters_so_far % 20 == 0:
                paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum())) # list of tuples
                assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)

        with timed("vf"):

            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches((seg["ob"], seg["tdlamret"]), 
                include_final_partial_batch=False, batch_size=64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)

        logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank==0:
            logger.dump_tabular()
Exemplo n.º 5
0
Arquivo: pois2.py Projeto: Umbi14/pois
def learn(env, make_policy, *,
          n_episodes,
          horizon,
          delta,
          gamma,
          max_iters,
          use_natural_gradient=False, #can be 'exact', 'approximate'
          fisher_reg=1e-2,
          iw_method='is',
          iw_norm='none',
          bound='J',
          line_search_type='parabola',
          save_weights=False,
          improvement_tol=0.,
          center_return=False,
          render_after=None,
          max_offline_iters=100,
          callback=None):

    np.set_printoptions(precision=3)
    max_samples = horizon * n_episodes

    if line_search_type == 'binary':
        line_search = line_search_binary
    elif line_search_type == 'parabola':
        line_search = line_search_parabola
    else:
        raise ValueError()

    # Building the environment
    ob_space = env.observation_space
    ac_space = env.action_space

    # Building the policy
    pi = make_policy('pi', ob_space, ac_space)
    oldpi = make_policy('oldpi', ob_space, ac_space)

    all_var_list = pi.get_trainable_variables()
    var_list = [v for v in all_var_list if v.name.split('/')[1].startswith('pol')]

    shapes = [U.intprod(var.get_shape().as_list()) for var in var_list]
    n_parameters = sum(shapes)

    # Placeholders
    ob_ = ob = U.get_placeholder_cached(name='ob')
    ac_ = pi.pdtype.sample_placeholder([max_samples], name='ac')
    mask_ = tf.placeholder(dtype=tf.float32, shape=(max_samples), name='mask')
    disc_rew_ = tf.placeholder(dtype=tf.float32, shape=(max_samples), name='disc_rew')
    gradient_ = tf.placeholder(dtype=tf.float32, shape=(n_parameters, 1), name='gradient')

    # Policy densities
    target_log_pdf = pi.pd.logp(ac_)
    behavioral_log_pdf = oldpi.pd.logp(ac_)
    log_ratio = target_log_pdf - behavioral_log_pdf

    # Split operations
    disc_rew_split = tf.stack(tf.split(disc_rew_ * mask_, n_episodes))
    log_ratio_split = tf.stack(tf.split(log_ratio * mask_, n_episodes))
    target_log_pdf_split = tf.stack(tf.split(target_log_pdf * mask_, n_episodes))
    mask_split = tf.stack(tf.split(mask_, n_episodes))

    # Renyi divergence
    emp_d2_split = tf.stack(tf.split(pi.pd.renyi(oldpi.pd, 2) * mask_, n_episodes))
    emp_d2_cum_split = tf.reduce_sum(emp_d2_split, axis=1)
    empirical_d2 = tf.reduce_mean(tf.exp(emp_d2_cum_split))

    # Return
    ep_return = tf.reduce_sum(mask_split * disc_rew_split, axis=1)
    if center_return:
        ep_return = ep_return - tf.reduce_mean(ep_return)

    return_mean = tf.reduce_mean(ep_return)
    return_std = U.reduce_std(ep_return)
    return_max = tf.reduce_max(ep_return)
    return_min = tf.reduce_min(ep_return)
    return_abs_max = tf.reduce_max(tf.abs(ep_return))

    if iw_method == 'pdis':
        raise NotImplementedError()
    elif iw_method == 'is':
        iw = tf.exp(tf.reduce_sum(log_ratio_split, axis=1))
        if iw_norm == 'none':
            iwn = iw / n_episodes
            w_return_mean = tf.reduce_sum(iwn * ep_return)
        elif iw_norm == 'sn':
            iwn = iw / tf.reduce_sum(iw)
            w_return_mean = tf.reduce_sum(iwn * ep_return)
        elif iw_norm == 'regression':
            iwn = iw / n_episodes
            mean_iw = tf.reduce_mean(iw)
            beta = tf.reduce_sum((iw - mean_iw) * ep_return * iw) / (tf.reduce_sum((iw - mean_iw) ** 2) + 1e-24)
            w_return_mean = tf.reduce_mean(iw * ep_return - beta * (iw - 1))
        else:
            raise NotImplementedError()

        ess_classic = tf.linalg.norm(iw, 1) ** 2 / tf.linalg.norm(iw, 2) ** 2
        sqrt_ess_classic = tf.linalg.norm(iw, 1) / tf.linalg.norm(iw, 2)
        ess_renyi = n_episodes / empirical_d2
    else:
        raise NotImplementedError()

    if bound == 'J':
        bound_ = w_return_mean
    elif bound == 'std-d2':
        bound_ = w_return_mean - tf.sqrt((1 - delta) / (delta * ess_renyi)) * return_std
    elif bound == 'max-d2':
        bound_ = w_return_mean - tf.sqrt((1 - delta) / (delta * ess_renyi)) * return_abs_max
    elif bound == 'max-ess':
        bound_ = w_return_mean - tf.sqrt((1 - delta) / delta) / sqrt_ess_classic * return_abs_max
    elif bound == 'std-ess':
        bound_ = w_return_mean - tf.sqrt((1 - delta) / delta) / sqrt_ess_classic * return_std
    else:
        raise NotImplementedError()

    losses = [bound_, return_mean, return_max, return_min, return_std, empirical_d2, w_return_mean,
              tf.reduce_max(iwn), tf.reduce_min(iwn), tf.reduce_mean(iwn), U.reduce_std(iwn), tf.reduce_max(iw),
              tf.reduce_min(iw), tf.reduce_mean(iw), U.reduce_std(iw), ess_classic, ess_renyi]
    loss_names = ['Bound', 'InitialReturnMean', 'InitialReturnMax', 'InitialReturnMin', 'InitialReturnStd',
                  'EmpiricalD2', 'ReturnMeanIW', 'MaxIWNorm', 'MinIWNorm', 'MeanIWNorm', 'StdIWNorm',
                  'MaxIW', 'MinIW', 'MeanIW', 'StdIW', 'ESSClassic', 'ESSRenyi']

    if use_natural_gradient:
        p = tf.placeholder(dtype=tf.float32, shape=[None])
        target_logpdf_episode = tf.reduce_sum(target_log_pdf_split * mask_split, axis=1)
        grad_logprob = U.flatgrad(tf.stop_gradient(iwn) * target_logpdf_episode, var_list)
        dot_product = tf.reduce_sum(grad_logprob * p)
        hess_logprob = U.flatgrad(dot_product, var_list)
        compute_linear_operator = U.function([p, ob_, ac_, disc_rew_, mask_], [-hess_logprob])


    assign_old_eq_new = U.function([], [], updates=[tf.assign(oldv, newv)
                for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables())])

    compute_lossandgrad = U.function([ob_, ac_, disc_rew_, mask_], losses + [U.flatgrad(bound_, var_list)])
    compute_grad = U.function([ob_, ac_, disc_rew_, mask_], [U.flatgrad(bound_, var_list)])
    compute_bound = U.function([ob_, ac_, disc_rew_, mask_], [bound_])
    compute_losses = U.function([ob_, ac_, disc_rew_, mask_], losses)

    set_parameter = U.SetFromFlat(var_list)
    get_parameter = U.GetFlat(var_list)

    seg_gen = traj_segment_generator(pi, env, n_episodes, horizon, stochastic=True, gamma=gamma)
    sampler = type("SequentialSampler", (object,), {"collect": lambda self, _: seg_gen.__next__()})()

    U.initialize()

    # Starting optimizing

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=n_episodes)
    rewbuffer = deque(maxlen=n_episodes)

    while True:

        iters_so_far += 1

        if render_after is not None and iters_so_far % render_after == 0:
            if hasattr(env, 'render'):
                render(env, pi, horizon)

        if callback:
            callback(locals(), globals())

        if iters_so_far >= max_iters:
            print('Finised...')
            break

        logger.log('********** Iteration %i ************' % iters_so_far)

        theta = get_parameter()

        with timed('sampling'):
            seg = sampler.collect(theta)

        lens, rets = seg['ep_lens'], seg['ep_rets']

        lenbuffer.extend(lens)
        rewbuffer.extend(rets)
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)

        args = ob, ac, disc_rew, mask = seg['ob'], seg['ac'], seg['disc_rew'], seg['mask']

        assign_old_eq_new()

        def evaluate_loss():
            loss = compute_bound(*args)
            return loss[0]

        def evaluate_gradient():
            gradient = compute_grad(*args)
            return gradient[0]

        if use_natural_gradient:
            def evaluate_fisher_vector_prod(x):
                return compute_linear_operator(x, *args)[0] + fisher_reg * x

            def evaluate_natural_gradient(g):
                return cg(evaluate_fisher_vector_prod, g, cg_iters=10, verbose=0)
        else:
            evaluate_natural_gradient = None

        with timed('summaries before'):
            logger.record_tabular("Itaration", iters_so_far)
            logger.record_tabular("InitialBound", evaluate_loss())
            logger.record_tabular("EpLenMean", np.mean(lenbuffer))
            logger.record_tabular("EpRewMean", np.mean(rewbuffer))
            logger.record_tabular("EpThisIter", len(lens))
            logger.record_tabular("EpisodesSoFar", episodes_so_far)
            logger.record_tabular("TimestepsSoFar", timesteps_so_far)
            logger.record_tabular("TimeElapsed", time.time() - tstart)

        if save_weights:
            logger.record_tabular('Weights', str(get_parameter()))

        with timed("offline optimization"):

            theta, improvement = optimize_offline(theta,
                                                  set_parameter,
                                                  line_search,
                                                  evaluate_loss,
                                                  evaluate_gradient,
                                                  evaluate_natural_gradient,
                                                  max_offline_ite=max_offline_iters)

        set_parameter(theta)

        with timed('summaries after'):
            meanlosses = np.array(compute_losses(*args))
            for (lossname, lossval) in zip(loss_names, meanlosses):
                logger.record_tabular(lossname, lossval)

        logger.dump_tabular()


    env.close()
Exemplo n.º 6
0
def learn(env,
          policy_func,
          rank,
          pretrained,
          pretrained_weight,
          *,
          g_step,
          d_step,
          entcoeff,
          save_per_iter,
          ckpt_dir,
          log_dir,
          timesteps_per_batch,
          task_name,
          gamma,
          lam,
          max_kl,
          cg_iters,
          cg_damping=1e-2,
          vf_stepsize=1e-4,
          vf_iters=3,
          max_timesteps=0,
          max_episodes=0,
          max_iters=0,
          callback=None):

    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func(
        "pi",
        ob_space,
        ac_space,
    )  # reuse=(pretrained_weight != None)
    oldpi = policy_func("oldpi", ob_space, ac_space)
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    #ob = U.get_placeholder_cached(name="ob")
    ob_config = U.get_placeholder_cached(name="ob")
    ob_target = U.get_placeholder_cached(name="goal")
    obs_pos = U.get_placeholder_cached(name="obs_pos")
    #obs_pos2 = U.get_placeholder_cached(name="obs_pos2")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = entcoeff * meanent

    vferr = tf.reduce_mean(tf.square(pi.vpred - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    var_list = [
        v for v in all_var_list if v.name.startswith("pi/pol")
        or v.name.startswith("pi/logstd") or v.name.startswith("pi/obs")
    ]
    vf_var_list = [
        v for v in all_var_list
        if v.name.startswith("pi/vf") or v.name.startswith("pi/obs")
    ]

    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  # pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob_config, ob_target, obs_pos, ac, atarg],
                                losses)
    compute_lossandgrad = U.function(
        [ob_config, ob_target, obs_pos, ac, atarg],
        losses + [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function(
        [flat_tangent, ob_config, ob_target, obs_pos, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob_config, ob_target, obs_pos, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    vfadam.sync()
    if rank == 0:
        print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     timesteps_per_batch,
                                     stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards
    true_rewbuffer = deque(maxlen=40)
    max_trm = -5
    true_reward_mean = 0
    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    g_loss_stats = stats(loss_names)
    ep_stats = stats(["True_rewards", "Rewards", "Episode_length"])
    # if provide pretrained weight
    if pretrained_weight is not None:
        #U.load_variables(pretrained_weight, variables=pi.get_variables())
        saver = tf.train.Saver()
        saver.restore(tf.get_default_session(), pretrained_weight)

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break

        # Save model
        if rank == 0 and ckpt_dir is not None and true_reward_mean > max_trm:
            fname = os.path.join(ckpt_dir, task_name)
            os.makedirs(os.path.dirname(fname), exist_ok=True)
            saver = tf.train.Saver()
            saver.save(tf.get_default_session(), fname)
            max_trm = true_reward_mean

        logger.log("********** Iteration %i ************" % iters_so_far)

        def fisher_vector_product(p):
            v1 = allmean(compute_fvp(p, *fvpargs))
            # print("norm(v1):%.2e, norm(p):%.2e, cg_damping:%.2e"%(np.linalg.norm(v1), np.linalg.norm(p), cg_damping))
            return v1 + cg_damping * p

        # ------------------ Update G ------------------
        logger.log("Optimizing Policy...")
        for _ in range(g_step):
            with timed("sampling"):
                seg = seg_gen.__next__()
            add_vtarg_and_adv(seg, gamma, lam)
            # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
            ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
                "tdlamret"]
            vpredbefore = seg[
                "vpred"]  # predicted value function before udpate
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate

            if hasattr(pi, "ob_rms"):
                pi.ob_rms.update(ob)  # update running mean/std for policy
            config, goal, obstacle_pos = [], [], []
            for o in seg["ob"]:
                config.append(o["joint"])
                goal.append(o["target"])
                obstacle_pos.append(o["obstacle_pos1"])
                #obstacle_pos2.append(o["obstacle_pos2"])
            config, goal, obstacle_pos = map(np.array,
                                             [config, goal, obstacle_pos])
            args = config, goal, obstacle_pos, seg["ac"], atarg
            fvpargs = [arr[::5] for arr in args]

            assign_old_eq_new(
            )  # set old parameter values to new parameter values
            with timed("computegrad"):
                *lossbefore, g = compute_lossandgrad(*args)
            lossbefore = allmean(np.array(lossbefore))
            g = allmean(g)
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")
            else:
                with timed("cg"):
                    stepdir = cg(fisher_vector_product,
                                 g,
                                 cg_iters=cg_iters,
                                 verbose=rank == 0)
                    logger.log(
                        'iter:{:d}, norm of g: {:.4f}, error of cg: {:.4f}'.
                        format(
                            cg_iters, np.linalg.norm(g),
                            np.linalg.norm(g -
                                           compute_fvp(stepdir, *fvpargs))))
                assert np.isfinite(stepdir).all()

                shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / max_kl)
                # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(
                        np.array(compute_losses(*args)))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f" %
                               (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > max_kl * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather(
                        (thnew.sum(),
                         vfadam.getflat().sum()))  # list of tuples
                    assert all(
                        np.allclose(ps, paramsums[0]) for ps in paramsums[1:])
            with timed("vf"):
                for _ in range(vf_iters):
                    for (mbob, mbg, mbop, mbret) in dataset.iterbatches(
                        (config, goal, obstacle_pos, seg["tdlamret"]),
                            include_final_partial_batch=False,
                            batch_size=128):
                        if hasattr(pi, "ob_rms"):
                            pi.ob_rms.update(
                                mbob)  # update running mean/std for policy
                        g = allmean(
                            compute_vflossandgrad(mbob, mbg, mbop, mbret))
                        vfadam.update(g, vf_stepsize)

        g_losses = meanlosses
        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)
        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"]
                   )  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews, true_rets = map(flatten_lists, zip(*listoflrpairs))
        true_rewbuffer.extend(true_rets)
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpTrueRewMean", np.mean(true_rewbuffer))
        true_reward_mean = np.mean(true_rewbuffer)
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank == 0:
            logger.dump_tabular()
def learn(
        env,
        policy_fn,
        *,
        timesteps_per_batch,  # what to train on
        epsilon,
        beta,
        cg_iters,
        gamma,
        lam,  # advantage estimation
        entcoeff=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters=3,
        max_timesteps=0,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None,
        TRPO=False,
        n_policy=1,
        policy_type=0,
        filepath='',
        session,
        retrace=False):
    '''
    :param TRPO: True: TRPO, False: COPOS
    :param n_policy: Number of periodic policy parts
    :param policy_type: 0: Optimize 'n_policy' policies that are executed periodically. All the policies are updated.
                        1: The last 'n_policy' policies are executed periodically but only the last one is optimized.
                        2: The policy is spread over 'n_policy' time steps.
    '''
    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pis = [
        policy_fn("pi_" + str(i), ob_space, ac_space) for i in range(n_policy)
    ]
    oldpis = [
        policy_fn("oldpi_" + str(i), ob_space, ac_space)
        for i in range(n_policy)
    ]
    pi_vf = policy_fn("pi_vf", ob_space, ac_space)
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ob = U.get_placeholder_cached(name="ob")

    if policy_type == 0:
        print(
            "Policy type: " + str(policy_type) +
            ". Optimize 'n_policy' policies that are executed periodically. All the policies are updated."
        )
    elif policy_type == 1:
        print(
            "Policy type: " + str(policy_type) +
            ". The last 'n_policy' policies are executed periodically but only the last one is optimized."
        )
    elif policy_type == 2:
        print("Policy type: " + str(policy_type) +
              ". The policy is spread over 'n_policy' time steps.")
    else:
        print("Policy type: " + str(policy_type) + " is not supported.")

    # Compute variables for each policy separately
    old_entropy = []
    get_flat = []
    set_from_flat = []
    assign_old_eq_new = []
    copy_policy_back = []
    compute_losses = []
    compute_lossandgrad = []
    compute_fvp = []

    for i in range(n_policy):
        pi = pis[i]
        oldpi = oldpis[i]

        ac = pi.pdtype.sample_placeholder([None])

        kloldnew = oldpi.pd.kl(pi.pd)
        ent = pi.pd.entropy()
        old_entropy.append(oldpi.pd.entropy())
        meankl = tf.reduce_mean(kloldnew)
        meanent = tf.reduce_mean(ent)
        entbonus = entcoeff * meanent

        ratio = tf.exp(pi.pd.logp(ac) -
                       oldpi.pd.logp(ac))  # advantage * pnew / pold
        if retrace:
            surrgain = tf.reduce_mean(
                atarg)  # atarg incorporates pnew / pold already
        else:
            surrgain = tf.reduce_mean(ratio * atarg)

        optimgain = surrgain + entbonus
        losses = [optimgain, meankl, entbonus, surrgain, meanent]
        loss_names = ["optimgain", "meankl", "entloss", "surrgain", "Entropy"]

        dist = meankl

        all_var_list = pi.get_trainable_variables()
        all_var_list = [
            v for v in all_var_list if v.name.split("/")[0].startswith("pi")
        ]
        var_list = [
            v for v in all_var_list if v.name.split("/")[1].startswith("pol")
        ]

        #
        # fvp: Fisher Information Matrix / vector product based on Hessian of KL-divergence
        # fvp = F * v, where F = - E \partial_1 \partial_2 KL_div(p1 || p2)
        #
        get_flat.append(U.GetFlat(var_list))
        set_from_flat.append(U.SetFromFlat(var_list))
        klgrads = tf.gradients(dist, var_list)
        flat_tangent = tf.placeholder(dtype=tf.float32,
                                      shape=[None],
                                      name="flat_tan")
        shapes = [var.get_shape().as_list() for var in var_list]
        start = 0
        tangents = []
        for shape in shapes:
            sz = U.intprod(shape)
            tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
            start += sz
        gvp = tf.add_n([
            tf.reduce_sum(g * tangent)
            for (g, tangent) in zipsame(klgrads, tangents)
        ])  #pylint: disable=E1111
        fvp = U.flatgrad(gvp, var_list)

        #
        # fvpll: Fisher Information Matrix / vector product based on exact FIM
        # fvpll = F * v, where F = E[\partial_1 \log p * \partial_2 \log p]
        #

        # Mean: (\partial \mu^T / \partial param1) * Precision * (\partial \mu / \partial param1)

        # Covariance: 0.5 * Trace[Precision * (\partial Cov / \partial param1) *
        #                         Precision * (\partial Cov / \partial param2)]

        if i > 0:
            # Only needed for policy_type == 1 for copying policy 'i' to policy 'i-1'
            copy_policy_back.append(
                U.function(
                    [], [],
                    updates=[
                        tf.assign(oldv, newv) for (oldv, newv) in zipsame(
                            pis[i - 1].get_variables(), pi.get_variables())
                    ]))

        assign_old_eq_new.append(
            U.function([], [],
                       updates=[
                           tf.assign(oldv, newv) for (oldv, newv) in zipsame(
                               oldpi.get_variables(), pi.get_variables())
                       ]))
        compute_losses.append(U.function([ob, ac, atarg], losses))
        compute_lossandgrad.append(
            U.function([ob, ac, atarg],
                       losses + [U.flatgrad(optimgain, var_list)]))
        compute_fvp.append(U.function([flat_tangent, ob, ac, atarg], fvp))

    # Value function is global to all policies
    vferr = tf.reduce_mean(tf.square(pi_vf.vpred - ret))
    all_var_list = pi_vf.get_trainable_variables()
    vf_var_list = [
        v for v in all_var_list if v.name.split("/")[1].startswith("vf")
    ]
    vfadam = MpiAdam(vf_var_list)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()

    if policy_type == 1:
        # Initialize policies to identical values
        th_init = get_flat[0]()
        for i in range(n_policy):
            MPI.COMM_WORLD.Bcast(th_init, root=0)
            set_from_flat[i](th_init)
            vfadam.sync()
            print("Init param sum", th_init.sum(), flush=True)
    else:
        for i in range(n_policy):
            th_init = get_flat[i]()
            MPI.COMM_WORLD.Bcast(th_init, root=0)
            set_from_flat[i](th_init)
            vfadam.sync()
            print("Init param sum", th_init.sum(), flush=True)

    # Initialize eta, omega optimizer
    init_eta = 0.5
    init_omega = 2.0
    eta_omega_optimizer = EtaOmegaOptimizer(beta, epsilon, init_eta,
                                            init_omega)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = []
    for i in range(len(pis)):
        seg_gen.append(
            traj_segment_generator(pis,
                                   i + 1,
                                   pi_vf,
                                   env,
                                   timesteps_per_batch,
                                   stochastic=True))

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    n_saves = 0
    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************" % iters_so_far)

        if max_timesteps > 0 and (timesteps_so_far >=
                                  (n_saves * max_timesteps // 5)):
            # Save policy
            saver = tf.train.Saver()
            saver.save(session, filepath + "_" + str(iters_so_far))
            n_saves += 1

        with timed("sampling"):
            if policy_type == 1 and iters_so_far < len(pis):
                all_seg = seg_gen[iters_so_far].__next__(
                )  # For four time steps use the four policies
            else:
                all_seg = seg_gen[-1].__next__()

        if policy_type == 1 and retrace:
            act_pi_ids = np.empty_like(all_seg["vpred"], dtype=int)
            act_pi_ids[:] = n_policy - 1  # Always update the last policy
            add_vtarg_and_adv_retrace(all_seg, gamma, lam, act_pi_ids)
        else:
            add_vtarg_and_adv(all_seg, gamma, lam)

        # Split the advantage functions etc. among the policies
        segs = split_traj_segment(pis, all_seg)

        # Update all policies
        for pi_id in range(n_policy):
            if policy_type == 1:
                # Update only last policy
                pi_id = n_policy - 1
                # Using all the samples
                seg = all_seg
            else:
                seg = segs[pi_id]

            pi = pis[pi_id]
            oldpi = oldpis[pi_id]

            # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
            ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
                "tdlamret"]
            vpredbefore = seg[
                "vpred"]  # predicted value function before update
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate

            if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
            if hasattr(pi, "ob_rms"):
                pi.ob_rms.update(ob)  # update running mean/std for policy

            args = seg["ob"], seg["ac"], atarg
            fvpargs = [arr[::5] for arr in args]

            def fisher_vector_product(p):
                return allmean(compute_fvp[pi_id](p, *
                                                  fvpargs)) + cg_damping * p

            assign_old_eq_new[pi_id](
            )  # set old parameter values to new parameter values

            with timed("computegrad"):
                *lossbefore, g = compute_lossandgrad[pi_id](*args)
            lossbefore = allmean(np.array(lossbefore))
            g = allmean(g)
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")

                if policy_type == 1:
                    # Update only the last policy
                    break
            else:
                with timed("cg"):
                    stepdir = cg(fisher_vector_product,
                                 g,
                                 cg_iters=cg_iters,
                                 verbose=rank == 0)
                assert np.isfinite(stepdir).all()

                if TRPO:
                    #
                    # TRPO specific code.
                    # Find correct step size using line search
                    #
                    shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                    lm = np.sqrt(shs / epsilon)
                    # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                    fullstep = stepdir / lm
                    expectedimprove = g.dot(fullstep)
                    surrbefore = lossbefore[0]
                    stepsize = 1.0
                    thbefore = get_flat[pi_id]()
                    for _ in range(10):
                        thnew = thbefore + fullstep * stepsize
                        set_from_flat[pi_id](thnew)
                        meanlosses = surr, kl, *_ = allmean(
                            np.array(compute_losses[pi_id](*args)))
                        improve = surr - surrbefore
                        logger.log("Expected: %.3f Actual: %.3f" %
                                   (expectedimprove, improve))
                        if not np.isfinite(meanlosses).all():
                            logger.log(
                                "Got non-finite value of losses -- bad!")
                        elif kl > epsilon * 1.5:
                            logger.log(
                                "violated KL constraint. shrinking step.")
                        elif improve < 0:
                            logger.log(
                                "surrogate didn't improve. shrinking step.")
                        else:
                            logger.log("Stepsize OK!")
                            break
                        stepsize *= .5
                    else:
                        logger.log("couldn't compute a good step")
                        set_from_flat[pi_id](thbefore)
                else:
                    #
                    # COPOS specific implementation.
                    #

                    copos_update_dir = stepdir

                    # Split direction into log-linear 'w_theta' and non-linear 'w_beta' parts
                    w_theta, w_beta = pi.split_w(copos_update_dir)

                    # q_beta(s,a) = \grad_beta \log \pi(a|s) * w_beta
                    #             = features_beta(s) * K^T * Prec * a
                    # q_beta = self.target.get_q_beta(features_beta, actions)

                    Waa, Wsa = pi.w2W(w_theta)
                    wa = pi.get_wa(ob, w_beta)

                    varphis = pi.get_varphis(ob)

                    # Optimize eta and omega
                    tmp_ob = np.zeros(
                        (1, ) + env.observation_space.shape
                    )  # We assume that entropy does not depend on the NN
                    old_ent = old_entropy[pi_id].eval({oldpi.ob: tmp_ob})[0]
                    eta, omega = eta_omega_optimizer.optimize(
                        w_theta, Waa, Wsa, wa, varphis, pi.get_kt(),
                        pi.get_prec_matrix(), pi.is_new_policy_valid, old_ent)
                    logger.log("Initial eta: " + str(eta) + " and omega: " +
                               str(omega))

                    current_theta_beta = get_flat[pi_id]()
                    prev_theta, prev_beta = pi.all_to_theta_beta(
                        current_theta_beta)

                    for i in range(2):
                        # Do a line search for both theta and beta parameters by adjusting only eta
                        eta = eta_search(w_theta, w_beta, eta, omega, allmean,
                                         compute_losses[pi_id],
                                         get_flat[pi_id], set_from_flat[pi_id],
                                         pi, epsilon, args)
                        logger.log("Updated eta, eta: " + str(eta) +
                                   " and omega: " + str(omega))

                        # Find proper omega for new eta. Use old policy parameters first.
                        set_from_flat[pi_id](pi.theta_beta_to_all(
                            prev_theta, prev_beta))
                        eta, omega = \
                            eta_omega_optimizer.optimize(w_theta, Waa, Wsa, wa, varphis, pi.get_kt(),
                                                         pi.get_prec_matrix(), pi.is_new_policy_valid, old_ent, eta)
                        logger.log("Updated omega, eta: " + str(eta) +
                                   " and omega: " + str(omega))

                    # Use final policy
                    logger.log("Final eta: " + str(eta) + " and omega: " +
                               str(omega))
                    cur_theta = (eta * prev_theta +
                                 w_theta.reshape(-1, )) / (eta + omega)
                    cur_beta = prev_beta + w_beta.reshape(-1, ) / eta
                    thnew = pi.theta_beta_to_all(cur_theta, cur_beta)
                    set_from_flat[pi_id](thnew)

                    meanlosses = surr, kl, *_ = allmean(
                        np.array(compute_losses[pi_id](*args)))

                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather(
                        (thnew.sum(),
                         vfadam[pi_id].getflat().sum()))  # list of tuples
                    assert all(
                        np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

                for (lossname, lossval) in zip(loss_names, meanlosses):
                    logger.record_tabular(lossname, lossval)

                logger.record_tabular(
                    "ev_tdlam_before",
                    explained_variance(vpredbefore, tdlamret))

                if policy_type == 1:
                    # Update only the last policy
                    break

        if policy_type == 1:
            # Copy policies 1, ..., i to 0, ..., i-1
            for j in range(n_policy - 1):
                copy_policy_back[j]()

        with timed("vf"):
            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches(
                    (all_seg["ob"], all_seg["tdlamret"]),
                        include_final_partial_batch=False,
                        batch_size=64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)

        lrlocal = (all_seg["ep_lens"], all_seg["ep_rets"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("AverageReturn", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank == 0:
            logger.dump_tabular()
Exemplo n.º 8
0
def learn(
        *,
        network,
        env,
        total_timesteps,
        timesteps_per_batch=1024,  # what to train on
        max_kl=0.002,
        cg_iters=10,
        gamma=0.99,
        lam=1.0,  # advantage estimation
        seed=None,
        ent_coef=0.00,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters=3,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None,
        load_path=None,
        num_reward=1,
        **network_kwargs):
    '''
    learn a policy function with TRPO algorithm

    Parameters:
    ----------

    network                 neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types)
                            or function that takes input placeholder and returns tuple (output, None) for feedforward nets
                            or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets

    env                     environment (one of the gym environments or wrapped via baselines.common.vec_env.VecEnv-type class

    timesteps_per_batch     timesteps per gradient estimation batch

    max_kl                  max KL divergence between old policy and new policy ( KL(pi_old || pi) )

    ent_coef                coefficient of policy entropy term in the optimization objective

    cg_iters                number of iterations of conjugate gradient algorithm

    cg_damping              conjugate gradient damping

    vf_stepsize             learning rate for adam optimizer used to optimie value function loss

    vf_iters                number of iterations of value function optimization iterations per each policy optimization step

    total_timesteps           max number of timesteps

    max_episodes            max number of episodes

    max_iters               maximum number of policy optimization iterations

    callback                function to be called with (locals(), globals()) each policy optimization step

    load_path               str, path to load the model from (default: None, i.e. no model is loaded)

    **network_kwargs        keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network

    Returns:
    -------

    learnt model

    '''

    if MPI is not None:
        nworkers = MPI.COMM_WORLD.Get_size()
        rank = MPI.COMM_WORLD.Get_rank()
    else:
        nworkers = 1
        rank = 0

    cpus_per_worker = 1
    U.get_session(
        config=tf.ConfigProto(allow_soft_placement=True,
                              inter_op_parallelism_threads=cpus_per_worker,
                              intra_op_parallelism_threads=cpus_per_worker))

    set_global_seeds(seed)
    # 创建policy
    policy = build_policy(env,
                          network,
                          value_network='copy',
                          num_reward=num_reward,
                          **network_kwargs)

    process_dir = logger.get_dir()
    save_dir = process_dir.split(
        'Data')[-2] + 'log/l1/seed' + process_dir[-1] + '/'
    os.makedirs(save_dir, exist_ok=True)
    coe_save = []
    impro_save = []
    grad_save = []
    adj_save = []
    coe = np.ones((num_reward)) / num_reward

    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space

    #################################################################
    # ob ac ret atarg 都是 placeholder
    # ret atarg 此处应该是向量形式
    ob = observation_placeholder(ob_space)

    # 创建pi和oldpi
    with tf.variable_scope("pi"):
        pi = policy(observ_placeholder=ob)
    with tf.variable_scope("oldpi"):
        oldpi = policy(observ_placeholder=ob)

    # 每个reward都可以算一个atarg
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32,
                         shape=[None, num_reward])  # Empirical return

    ac = pi.pdtype.sample_placeholder([None])

    #此处的KL div和entropy与reward无关
    ##################################
    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    # entbonus 是entropy loss
    entbonus = ent_coef * meanent
    #################################

    ###########################################################
    # vferr 用来更新 v 网络
    vferr = tf.reduce_mean(tf.square(pi.vf - ret))
    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))
    # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    # optimgain 用来更新 policy 网络, 应该每个reward有一个
    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    ###########################################################
    dist = meankl

    # 定义要优化的变量和 V 网络 adam 优化器
    all_var_list = get_trainable_variables("pi")
    # var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
    # vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
    var_list = get_pi_trainable_variables("pi")
    vf_var_list = get_vf_trainable_variables("pi")

    vfadam = MpiAdam(vf_var_list)

    # 把变量展开成一个向量的类
    get_flat = U.GetFlat(var_list)

    # 这个类可以把一个向量分片赋值给var_list里的变量
    set_from_flat = U.SetFromFlat(var_list)
    # kl散度的梯度
    klgrads = tf.gradients(dist, var_list)

    ####################################################################
    # 拉直的向量
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")

    # 把拉直的向量重新分成很多向量
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    ####################################################################

    ####################################################################
    # 把kl散度梯度与变量乘积相加
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  #pylint: disable=E1111
    # 把gvp的梯度展成向量
    fvp = U.flatgrad(gvp, var_list)
    ####################################################################

    # 用学习后的策略更新old策略
    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(get_variables("oldpi"), get_variables("pi"))
        ])

    # 计算loss
    compute_losses = U.function([ob, ac, atarg], losses)
    # 计算loss和梯度
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    # 计算fvp
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    # 计算值网络的梯度
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        if MPI is not None:
            out = np.empty_like(x)
            MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
            out /= nworkers
        else:
            out = np.copy(x)

        return out

    # 初始化variable
    U.initialize()
    if load_path is not None:
        pi.load(load_path)

    # 得到初始化的参数向量
    th_init = get_flat()
    if MPI is not None:
        MPI.COMM_WORLD.Bcast(th_init, root=0)

    # 把向量the_init的值分片赋值给var_list
    set_from_flat(th_init)

    #同步
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------

    # 这是一个生成数据的迭代器
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     timesteps_per_batch,
                                     stochastic=True,
                                     num_reward=num_reward)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()

    # 双端队列
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    if sum([max_iters > 0, total_timesteps > 0, max_episodes > 0]) == 0:
        # noththing to be done
        return pi

    assert sum([max_iters>0, total_timesteps>0, max_episodes>0]) < 2, \
        'out of max_iters, total_timesteps, and max_episodes only one should be specified'

    while True:
        if callback: callback(locals(), globals())
        if total_timesteps and timesteps_so_far >= total_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************" % iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()

        # 计算累积回报
        add_vtarg_and_adv(seg, gamma, lam, num_reward=num_reward)
        ###########$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ToDo
        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))

        # ob, ac, atarg, tdlamret 的类型都是ndarray
        #ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
        _, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
            "tdlamret"]
        #print(seg['ob'].shape,type(seg['ob']))
        #print(seg['ac'],type(seg['ac']))
        #print(seg['adv'],type(seg['adv']))
        #print(seg["tdlamret"].shape,type(seg['tdlamret']))
        vpredbefore = seg["vpred"]  # predicted value function before udpate

        # 标准化
        #print("============================== atarg =========================================================")
        #print(atarg)
        atarg = (atarg - np.mean(atarg, axis=0)) / np.std(
            atarg, axis=0)  # standardized advantage function estimate
        #atarg = (atarg) / np.max(np.abs(atarg),axis=0)
        #print('======================================= standardized atarg ====================================')
        #print(atarg)
        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"):
            pi.ob_rms.update(ob)  # update running mean/std for policy

        ## set old parameter values to new parameter values
        assign_old_eq_new()

        G = None
        S = None
        mr_lossbefore = np.zeros((num_reward, len(loss_names)))
        grad_norm = np.zeros((num_reward + 1))
        for i in range(num_reward):
            args = seg["ob"], seg["ac"], atarg[:, i]
            #print(atarg[:,i])
            # 算是args的一个sample,每隔5个取出一个
            fvpargs = [arr[::5] for arr in args]

            # 这个函数计算fisher matrix 与向量 p 的 乘积
            def fisher_vector_product(p):
                return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

            with timed("computegrad of " + str(i + 1) + ".th reward"):
                *lossbefore, g = compute_lossandgrad(*args)
            lossbefore = allmean(np.array(lossbefore))
            mr_lossbefore[i] = lossbefore
            g = allmean(g)
            #print("***************************************************************")
            #print(g)
            #print('==================='+str(i+1)+"=====================",np.linalg.norm(g))
            #print(atarg[:,i])
            if isinstance(G, np.ndarray):
                G = np.vstack((G, g))
            else:
                G = g

            # g是目标函数的梯度
            # 利用共轭梯度获得更新方向
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")
            else:
                with timed("cg of " + str(i + 1) + ".th reward"):
                    # stepdir 是更新方向
                    stepdir = cg(fisher_vector_product,
                                 g,
                                 cg_iters=cg_iters,
                                 verbose=rank == 0)
                    shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                    lm = np.sqrt(shs / max_kl)
                    # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                    fullstep = stepdir / lm
                    #print(np.linalg.norm(fullstep))
                    grad_norm[i] = np.linalg.norm(fullstep)
                assert np.isfinite(stepdir).all()
                if isinstance(S, np.ndarray):
                    S = np.vstack((S, stepdir))
                else:
                    S = stepdir
        #print('======================================= G ====================================')
        #print(G)
        #print('======================================= S ====================================')
        #print(S)
        new_coe = get_coefficient(G, S)
        #coe = 0.99 * coe + 0.01 * new_coe
        coe = new_coe
        coe_save.append(coe)
        #根据梯度的夹角调整参数
        try:
            GG = np.dot(S, S.T)
            D = np.sqrt(np.diag(1 / np.diag(GG)))
            GG = np.dot(np.dot(D, GG), D)
            #print('======================================= inner product ====================================')
            #print(GG)
            adj = np.sum(GG) / (num_reward**2)
        except:
            adj = 1
        #print('======================================= adj ====================================')
        #print(adj)
        try:
            adj = 1
            adj_save.append(adj)
            adj_max_kl = adj * max_kl
            #################################################################
            grad_norm = grad_norm * np.sqrt(adj)
            stepdir = np.dot(coe, S)
            g = np.dot(coe, G)
            lossbefore = np.dot(coe, mr_lossbefore)
            #################################################################

            shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
            lm = np.sqrt(shs / adj_max_kl)
            # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
            fullstep = stepdir / lm
            grad_norm[num_reward] = np.linalg.norm(fullstep)
            grad_save.append(grad_norm)
            expectedimprove = g.dot(fullstep)
            surrbefore = lossbefore[0]
            stepsize = 1.0
            thbefore = get_flat()

            def compute_mr_losses():
                mr_losses = np.zeros((num_reward, len(loss_names)))
                for i in range(num_reward):
                    args = seg["ob"], seg["ac"], atarg[:, i]
                    one_reward_loss = allmean(np.array(compute_losses(*args)))
                    mr_losses[i] = one_reward_loss
                mr_loss = np.dot(coe, mr_losses)
                return mr_loss, mr_losses

            # 做10次搜索
            for _ in range(10):
                thnew = thbefore + fullstep * stepsize
                set_from_flat(thnew)
                mr_loss_new, mr_losses_new = compute_mr_losses()
                mr_impro = mr_losses_new - mr_lossbefore
                meanlosses = surr, kl, *_ = allmean(np.array(mr_loss_new))
                improve = surr - surrbefore
                logger.log("Expected: %.3f Actual: %.3f" %
                           (expectedimprove, improve))
                if not np.isfinite(meanlosses).all():
                    logger.log("Got non-finite value of losses -- bad!")
                elif kl > adj_max_kl * 1.5:
                    logger.log("violated KL constraint. shrinking step.")
                elif improve < 0:
                    logger.log("surrogate didn't improve. shrinking step.")
                else:
                    logger.log("Stepsize OK!")
                    impro_save.append(np.hstack((mr_impro[:, 0], improve)))
                    break
                stepsize *= .5
            else:
                logger.log("couldn't compute a good step")
                set_from_flat(thbefore)
            if nworkers > 1 and iters_so_far % 20 == 0:
                paramsums = MPI.COMM_WORLD.allgather(
                    (thnew.sum(), vfadam.getflat().sum()))  # list of tuples
                assert all(
                    np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

            for (lossname, lossval) in zip(loss_names, meanlosses):
                logger.record_tabular(lossname, lossval)

            with timed("vf"):
                #print('======================================= tdlamret ====================================')
                #print(seg["tdlamret"])
                for _ in range(vf_iters):
                    for (mbob, mbret) in dataset.iterbatches(
                        (seg["ob"], seg["tdlamret"]),
                            include_final_partial_batch=False,
                            batch_size=64):
                        #with tf.Session() as sess:
                        #    sess.run(tf.global_variables_initializer())
                        #    aaa = sess.run(pi.vf,feed_dict={ob:mbob,ret:mbret})
                        #    print("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa")
                        #    print(aaa.shape)
                        #    print(mbret.shape)
                        g = allmean(compute_vflossandgrad(mbob, mbret))
                        vfadam.update(g, vf_stepsize)
            #print(mbob,mbret)
        except:
            print('error')
        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        if MPI is not None:
            listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        else:
            listoflrpairs = [lrlocal]

        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1
        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        if rank == 0:
            logger.dump_tabular()
        #pdb.set_trace()
    np.save(save_dir + 'coe.npy', coe_save)
    np.save(save_dir + 'grad.npy', grad_save)
    np.save(save_dir + 'improve.npy', impro_save)
    np.save(save_dir + 'adj.npy', adj_save)
    return pi
Exemplo n.º 9
0
def learn(
        env,
        policy_fn,
        *,
        timesteps_per_batch,  # what to train on
        epsilon,
        beta,
        cg_iters,
        gamma,
        lam,  # advantage estimation
        trial,
        method,
        entcoeff=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters=3,
        max_timesteps=0,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None,
        TRPO=False):
    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_fn("pi", ob_space, ac_space)
    oldpi = policy_fn("oldpi", ob_space, ac_space)
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    old_entropy = oldpi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = entcoeff * meanent

    vferr = tf.reduce_mean(tf.square(pi.vpred - ret))

    # ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # advantage * pnew / pold
    # surrgain = tf.reduce_mean(ratio * atarg)

    surrgain = tf.reduce_mean(pi.pd.logp(ac) * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    all_var_list = [
        v for v in all_var_list if v.name.split("/")[0].startswith("pi")
    ]
    var_list = [
        v for v in all_var_list if v.name.split("/")[1].startswith("pol")
    ]
    vf_var_list = [
        v for v in all_var_list if v.name.split("/")[1].startswith("vf")
    ]
    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Initialize eta, omega optimizer
    init_eta = 0.5
    init_omega = 2.0
    eta_omega_optimizer = EtaOmegaOptimizer(beta, epsilon, init_eta,
                                            init_omega)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     timesteps_per_batch,
                                     stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************" % iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
            "tdlamret"]
        vpredbefore = seg["vpred"]  # predicted value function before udpate
        atarg = (atarg - atarg.mean()
                 ) / atarg.std()  # standardized advantage function estimate

        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"):
            pi.ob_rms.update(ob)  # update running mean/std for policy

        args = seg["ob"], seg["ac"], atarg
        fvpargs = [arr[::5] for arr in args]

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        assign_old_eq_new()  # set old parameter values to new parameter values
        with timed("computegrad"):
            *lossbefore, g = compute_lossandgrad(*args)
        lossbefore = allmean(np.array(lossbefore))
        g = allmean(g)
        if np.allclose(g, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with timed("cg"):
                stepdir = cg(fisher_vector_product,
                             g,
                             cg_iters=cg_iters,
                             verbose=rank == 0)
            assert np.isfinite(stepdir).all()

            if TRPO:
                #
                # TRPO specific code.
                # Find correct step size using line search
                #
                shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / epsilon)
                # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(
                        np.array(compute_losses(*args)))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f" %
                               (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > epsilon * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)
            else:
                #
                # COPOS specific implementation.
                #

                copos_update_dir = stepdir

                # Split direction into log-linear 'w_theta' and non-linear 'w_beta' parts
                w_theta, w_beta = pi.split_w(copos_update_dir)

                # q_beta(s,a) = \grad_beta \log \pi(a|s) * w_beta
                #             = features_beta(s) * K^T * Prec * a
                # q_beta = self.target.get_q_beta(features_beta, actions)

                Waa, Wsa = pi.w2W(w_theta)
                wa = pi.get_wa(ob, w_beta)

                varphis = pi.get_varphis(ob)

                # Optimize eta and omega
                tmp_ob = np.zeros(
                    (1, ) + env.observation_space.shape
                )  # We assume that entropy does not depend on the NN
                old_ent = old_entropy.eval({oldpi.ob: tmp_ob})[0]
                eta, omega = eta_omega_optimizer.optimize(
                    w_theta, Waa, Wsa, wa, varphis, pi.get_kt(),
                    pi.get_prec_matrix(), pi.is_new_policy_valid, old_ent)
                logger.log("Initial eta: " + str(eta) + " and omega: " +
                           str(omega))

                current_theta_beta = get_flat()
                prev_theta, prev_beta = pi.all_to_theta_beta(
                    current_theta_beta)

                for i in range(2):
                    # Do a line search for both theta and beta parameters by adjusting only eta
                    eta = eta_search(w_theta, w_beta, eta, omega, allmean,
                                     compute_losses, get_flat, set_from_flat,
                                     pi, epsilon, args)
                    logger.log("Updated eta, eta: " + str(eta) +
                               " and omega: " + str(omega))

                    # Find proper omega for new eta. Use old policy parameters first.
                    set_from_flat(pi.theta_beta_to_all(prev_theta, prev_beta))
                    eta, omega = \
                        eta_omega_optimizer.optimize(w_theta, Waa, Wsa, wa, varphis, pi.get_kt(),
                                                     pi.get_prec_matrix(), pi.is_new_policy_valid, old_ent, eta)
                    logger.log("Updated omega, eta: " + str(eta) +
                               " and omega: " + str(omega))

                # Use final policy
                logger.log("Final eta: " + str(eta) + " and omega: " +
                           str(omega))
                cur_theta = (eta * prev_theta +
                             w_theta.reshape(-1, )) / (eta + omega)
                cur_beta = prev_beta + w_beta.reshape(-1, ) / eta
                set_from_flat(pi.theta_beta_to_all(cur_theta, cur_beta))

                meanlosses = surr, kl, *_ = allmean(
                    np.array(compute_losses(*args)))

            if nworkers > 1 and iters_so_far % 20 == 0:
                paramsums = MPI.COMM_WORLD.allgather(
                    (thnew.sum(), vfadam.getflat().sum()))  # list of tuples
                assert all(
                    np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)

        with timed("vf"):

            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches(
                    (seg["ob"], seg["tdlamret"]),
                        include_final_partial_batch=False,
                        batch_size=64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)

        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        logger.record_tabular("Name", method)
        logger.record_tabular("Iteration", iters_so_far)
        logger.record_tabular("trial", trial)

        if rank == 0:
            logger.dump_tabular()
Exemplo n.º 10
0
def learn(env, last_ob, last_jpos, run_reach, policy_func, reward_giver, expert_dataset, rank,
          pretrained, pretrained_weight, *,
          g_step, d_step, entcoeff, save_per_iter,
          ckpt_dir, log_dir, timesteps_per_batch, task_name,
          gamma, lam,
          max_kl, cg_iters, cg_damping=1e-2,
          vf_stepsize=3e-4, d_stepsize=3e-4, vf_iters=3,
          max_timesteps=0, max_episodes=0, max_iters=0,
          callback=None
          ):

    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space

    

    pi = policy_func("pi_grasp", ob_space, ac_space, reuse=(pretrained_weight != None))
    oldpi = policy_func("oldpi", ob_space, ac_space)
    atarg = tf.compat.v1.placeholder(dtype=tf.float32, shape=[None])  # Target advantage function (if applicable)
    ret = tf.compat.v1.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])


    # Changes are made in order to use tensorboard
    # -------------------------------------------
    #train_writer = tf.compat.v1.summary.FileWriter('../../logs/trpo_mpi') # sets log dir to GailPart folder

    #sess = tf.compat.v1.Session() # create a session??

    # -------------------------------------------

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = entcoeff * meanent

    vferr = tf.reduce_mean(tf.square(pi.vpred - ret))

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    var_list = [v for v in all_var_list if v.name.startswith("pi_grasp/pol") or v.name.startswith("pi_grasp/logstd")]
    vf_var_list = [v for v in all_var_list if v.name.startswith("pi_grasp/vff")]
    assert len(var_list) == len(vf_var_list) + 1
    d_adam = MpiAdam(reward_giver.get_trainable_variables())
    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.compat.v1.placeholder(dtype=tf.float32, shape=[None], name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start+sz], shape))
        start += sz
    gvp = tf.add_n([tf.reduce_sum(g*tangent) for (g, tangent) in zipsame(klgrads, tangents)])  # pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function([], [], updates=[tf.compat.v1.assign(oldv, newv)
                                                    for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables())])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(colorize("done in %.3f seconds" % (time.time() - tstart), color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    d_adam.sync()
    vfadam.sync()
    
        
    if rank == 0:
        print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi, last_ob, last_jpos, run_reach, policy_func, env, reward_giver, timesteps_per_batch, stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards
    true_rewbuffer = deque(maxlen=40)

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    g_loss_stats = stats(loss_names)
    d_loss_stats = stats(reward_giver.loss_name)
    ep_stats = stats(["True_rewards", "Rewards", "Episode_length"])
    # if provide pretrained weight
    if pretrained_weight is not None:
        U.load_state(pretrained_weight, var_list=pi.get_variables())

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break

        # Save model
        if rank == 0 and iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            t_name = task_name + "_" + str(iters_so_far)
            fname = os.path.join(ckpt_dir, t_name) # changed from task_name
            os.makedirs(os.path.dirname(fname), exist_ok=True)
            saver = tf.compat.v1.train.Saver()
            saver.save(tf.compat.v1.get_default_session(), fname)

        logger.log("********** Iteration %i ************" % iters_so_far)

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p
        # ------------------ Update G ------------------
        logger.log("Optimizing Policy...")
        for _ in range(g_step):
            with timed("sampling"):
                seg = seg_gen.__next__()
                #print("trpo_mpi, seg = seg_gen.__next__() call output: ", seg )
            add_vtarg_and_adv(seg, gamma, lam)
            # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
            ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
            vpredbefore = seg["vpred"]  # predicted value function before udpate
            atarg = (atarg - atarg.mean()) / atarg.std()  # standardized advantage function estimate

            if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob)  # update running mean/std for policy

            args = seg["ob"], seg["ac"], atarg
            fvpargs = [arr[::5] for arr in args]

            assign_old_eq_new()  # set old parameter values to new parameter values
            with timed("computegrad"):
                *lossbefore, g = compute_lossandgrad(*args)
            lossbefore = allmean(np.array(lossbefore))
            g = allmean(g)
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")
            else:
                with timed("cg"):
                    stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=rank == 0)
                assert np.isfinite(stepdir).all()
                shs = .5*stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / max_kl)
                # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args)))

                    #logger.log("trpo_mpi.py, what should be logged with loss names ie. meanlosses:_", meanlosses)

                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f" % (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > max_kl * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum()))  # list of tuples
                    assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:])
            with timed("vf"):
                for _ in range(vf_iters):
                    for (mbob, mbret) in dataset.iterbatches((seg["ob"], seg["tdlamret"]),
                                                             include_final_partial_batch=False, batch_size=128):
                        if hasattr(pi, "ob_rms"):
                            pi.ob_rms.update(mbob)  # update running mean/std for policy
                        g = allmean(compute_vflossandgrad(mbob, mbret))
                        vfadam.update(g, vf_stepsize)

        g_losses = meanlosses

        #logger.log("trpo_mpi.py, mean losses before logging wiht loss names: \n")
        #logger.log(meanlosses)


        # This is where the nan values are tabulated for some of the entries
        #logger.log("trpo_mpi.py, view whats being printed with (loss_names, lossvalues)")
        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)
        logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))
        # ------------------ Update D ------------------
        logger.log("Optimizing Discriminator...")
        logger.log(fmt_row(13, reward_giver.loss_name))
        ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob))
        batch_size = len(ob) // d_step
        d_losses = []  # list of tuples, each of which gives the loss for a minibatch
        for ob_batch, ac_batch in dataset.iterbatches((ob, ac),
                                                      include_final_partial_batch=False,
                                                      batch_size=batch_size):
            ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob_batch))
            # update running mean/std for reward_giver
            if hasattr(reward_giver, "obs_rms"): reward_giver.obs_rms.update(np.concatenate((ob_batch, ob_expert), 0))
            *newlosses, g = reward_giver.lossandgrad(ob_batch, ac_batch, ob_expert, ac_expert)
            d_adam.update(allmean(g), d_stepsize)
            d_losses.append(newlosses)
        
        # This is to see what the d_losses are
        #logger.log("trpo_mpi.py, see what is being logged in d_losses")
        #logger.log("trpo_mpi.py, d_losses")
        #logger.log(d_losses)
        
        logger.log(fmt_row(13, np.mean(d_losses, axis=0)))

        # For Tensorboard Logging
        # ---------------------------
        #tf.compat.v1.summary.scalar("Generator Accuracy", tf.convert_to_tensor( np.mean(d_losses, axis=0)[4] )  ) # 5 position
        #tf.compat.v1.summary.scalar("Expert Accuracy", tf.convert_to_tensor( np.mean(d_losses, axis=0)[5] ) ) # 6 position
        #tf.compat.v1.summary.scalar("Entropy Loss", tf.convert_to_tensor( np.mean(d_losses, axis=0)[3] )  ) # 4 position

        #merge = tf.compat.v1.summary.merge_all() # merge summaries
        #summary = sess.run([merge])

        #train_writer.add_summary(summary, iters_so_far)

        # Is there a need to reset metric after every epoch? I dont think so?
        



        # ---------------------------

        
        #logger.log("trpo_mpi.py, after logging, but before recordeing timesteps so far")

        lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"])  # local values, truly confirmed is empty after call
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews, true_rets = map(flatten_lists, zip(*listoflrpairs))
        true_rewbuffer.extend(true_rets)
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        # Could it be that the seg locals for lens and rets are ommitted since has no use in gail algorithm?

        # Probably dont have to worry about it, check the scalar part
        logger.record_tabular("EpLenMean", np.mean(lenbuffer)) # This has nan values
        logger.record_tabular("EpRewMean", np.mean(rewbuffer)) # This has nan values
        logger.record_tabular("EpTrueRewMean", np.mean(true_rewbuffer)) # This has nan values
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        #timesteps_so_far += sum(lens)

        timesteps_so_far += seg["steps"] # changed to match setup with no finishing condition
        iters_so_far += 1


        #env.reset() #reset the environment after a new iteration, therefore in traj generator check ob

        logger.record_tabular("EpisodesSoFar", episodes_so_far) # This is 0 ? if lens which is the number of entries for episode length doesnt exist, doesnt make sense for it to have a return.
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        # I think the entloss, entrpoy, ev_.... and the useful ones arent from the environment called using the trpo

        if rank == 0:
            logger.dump_tabular()
Exemplo n.º 11
0
def learn(*,
        network,
        env,
        total_timesteps,
        timesteps_per_batch=1024, # what to train on
        max_kl=0.001,
        cg_iters=10,
        gamma=0.99,
        lam=1.0, # advantage estimation
        seed=None,
        ent_coef=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters =3,
        max_episodes=0, max_iters=0,  # time constraint
        callback=None,
        load_path=None,
        **network_kwargs
        ):
    '''
    learn a policy function with TRPO algorithm

    Parameters:
    ----------

    network                 neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types)
                            or function that takes input placeholder and returns tuple (output, None) for feedforward nets
                            or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets

    env                     environment (one of the gym environments or wrapped via baselines.common.vec_env.VecEnv-type class

    timesteps_per_batch     timesteps per gradient estimation batch

    max_kl                  max KL divergence between old policy and new policy ( KL(pi_old || pi) )

    ent_coef                coefficient of policy entropy term in the optimization objective

    cg_iters                number of iterations of conjugate gradient algorithm

    cg_damping              conjugate gradient damping

    vf_stepsize             learning rate for adam optimizer used to optimie value function loss

    vf_iters                number of iterations of value function optimization iterations per each policy optimization step

    total_timesteps           max number of timesteps

    max_episodes            max number of episodes

    max_iters               maximum number of policy optimization iterations

    callback                function to be called with (locals(), globals()) each policy optimization step

    load_path               str, path to load the model from (default: None, i.e. no model is loaded)

    **network_kwargs        keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network

    Returns:
    -------

    learnt model

    '''

    if MPI is not None:
        nworkers = MPI.COMM_WORLD.Get_size()
        rank = MPI.COMM_WORLD.Get_rank()
    else:
        nworkers = 1
        rank = 0

    cpus_per_worker = 1
    U.get_session(config=tf.ConfigProto(
            allow_soft_placement=True,
            inter_op_parallelism_threads=cpus_per_worker,
            intra_op_parallelism_threads=cpus_per_worker
    ))


    policy = build_policy(env, network, value_network='copy', **network_kwargs)
    set_global_seeds(seed)

    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space

    ob = observation_placeholder(ob_space)
    with tf.variable_scope("pi"):
        pi = policy(observ_placeholder=ob)
    with tf.variable_scope("oldpi"):
        oldpi = policy(observ_placeholder=ob)

    atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return

    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = ent_coef * meanent

    vferr = tf.reduce_mean(tf.square(pi.vf - ret))

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = get_trainable_variables("pi")
    # var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
    # vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
    var_list = get_pi_trainable_variables("pi")
    vf_var_list = get_vf_trainable_variables("pi")

    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start+sz], shape))
        start += sz
    gvp = tf.add_n([tf.reduce_sum(g*tangent) for (g, tangent) in zipsame(klgrads, tangents)]) #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv)
        for (oldv, newv) in zipsame(get_variables("oldpi"), get_variables("pi"))])

    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(colorize("done in %.3f seconds"%(time.time() - tstart), color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        if MPI is not None:
            out = np.empty_like(x)
            MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
            out /= nworkers
        else:
            out = np.copy(x)

        return out

    U.initialize()
    if load_path is not None:
        pi.load(load_path)

    th_init = get_flat()
    if MPI is not None:
        MPI.COMM_WORLD.Bcast(th_init, root=0)

    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi, env, timesteps_per_batch, stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards

    if sum([max_iters>0, total_timesteps>0, max_episodes>0])==0:
        # noththing to be done
        return pi

    assert sum([max_iters>0, total_timesteps>0, max_episodes>0]) < 2, \
        'out of max_iters, total_timesteps, and max_episodes only one should be specified'

    while True:
        if callback: callback(locals(), globals())
        if total_timesteps and timesteps_so_far >= total_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************"%iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
        vpredbefore = seg["vpred"] # predicted value function before udpate
        atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate

        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy

        args = seg["ob"], seg["ac"], atarg
        fvpargs = [arr[::5] for arr in args]
        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        assign_old_eq_new() # set old parameter values to new parameter values
        with timed("computegrad"):
            *lossbefore, g = compute_lossandgrad(*args)
        lossbefore = allmean(np.array(lossbefore))
        g = allmean(g)
        if np.allclose(g, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with timed("cg"):
                stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=rank==0)
            assert np.isfinite(stepdir).all()
            shs = .5*stepdir.dot(fisher_vector_product(stepdir))
            lm = np.sqrt(shs / max_kl)
            # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
            fullstep = stepdir / lm
            expectedimprove = g.dot(fullstep)
            surrbefore = lossbefore[0]
            stepsize = 1.0
            thbefore = get_flat()
            for _ in range(10):
                thnew = thbefore + fullstep * stepsize
                set_from_flat(thnew)
                meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args)))
                improve = surr - surrbefore
                logger.log("Expected: %.3f Actual: %.3f"%(expectedimprove, improve))
                if not np.isfinite(meanlosses).all():
                    logger.log("Got non-finite value of losses -- bad!")
                elif kl > max_kl * 1.5:
                    logger.log("violated KL constraint. shrinking step.")
                elif improve < 0:
                    logger.log("surrogate didn't improve. shrinking step.")
                else:
                    logger.log("Stepsize OK!")
                    break
                stepsize *= .5
            else:
                logger.log("couldn't compute a good step")
                set_from_flat(thbefore)
            if nworkers > 1 and iters_so_far % 20 == 0:
                paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum())) # list of tuples
                assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)

        with timed("vf"):

            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches((seg["ob"], seg["tdlamret"]),
                include_final_partial_batch=False, batch_size=64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)

        logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values
        if MPI is not None:
            listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples
        else:
            listoflrpairs = [lrlocal]

        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank==0:
            logger.dump_tabular()

    return pi
Exemplo n.º 12
0
def learn(env,
          policy_func,
          reward_giver,
          expert_dataset,
          rank,
          g_step,
          d_step,
          entcoeff,
          save_per_iter,
          timesteps_per_batch,
          ckpt_dir,
          log_dir,
          task_name,
          gamma,
          lam,
          max_kl,
          cg_iters,
          cg_damping=1e-2,
          vf_stepsize=3e-4,
          d_stepsize=3e-4,
          vf_iters=3,
          max_timesteps=0,
          max_episodes=0,
          max_iters=0,
          callback=None):

    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", ob_space, ac_space)
    saver = tf.train.Saver(
        var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='pi'))
    saver.restore(tf.get_default_session(), U_.getPath() + '/model/bc.ckpt')

    oldpi = policy_func("oldpi", ob_space, ac_space)
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = entcoeff * meanent

    vferr = tf.reduce_mean(tf.square(pi.vpred - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    var_list = [
        v for v in all_var_list
        if v.name.startswith("pi/pol") or v.name.startswith("pi/logstd")
    ]
    vf_var_list = [v for v in all_var_list if v.name.startswith("pi/vff")]
    assert len(var_list) == len(vf_var_list) + 1
    d_adam = MpiAdam(reward_giver.get_trainable_variables())
    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  # pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    d_adam.sync()
    vfadam.sync()
    if rank == 0:
        print("Init param sum", th_init.sum())

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     reward_giver,
                                     timesteps_per_batch,
                                     stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards
    true_rewbuffer = deque(maxlen=40)

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    g_loss_stats = stats(loss_names)
    d_loss_stats = stats(reward_giver.loss_name)
    ep_stats = stats(["True_rewards", "Rewards", "Episode_length"])
    # if provide pretrained weight

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break

        # Save model
        if rank == 0 and iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            fname = os.path.join(ckpt_dir, task_name)
            print('save model as ', fname)
            try:
                os.makedirs(os.path.dirname(fname))
            except OSError:
                # folder already exists
                pass
            saver = tf.train.Saver()
            saver.save(tf.get_default_session(), fname)

        print("********** Iteration %i ************" % iters_so_far)

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        # ------------------ Update G ------------------
        print("Optimizing Policy...")
        for _ in range(g_step):
            with timed("sampling"):
                seg = seg_gen.next()
            add_vtarg_and_adv(seg, gamma, lam)
            # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
            ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
                "tdlamret"]
            vpredbefore = seg[
                "vpred"]  # predicted value function before udpate
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate

            if hasattr(pi, "ob_rms"):
                pi.ob_rms.update(ob)  # update running mean/std for policy

            args = seg["ob"], seg["ac"], atarg
            fvpargs = [arr[::5] for arr in args]

            assign_old_eq_new(
            )  # set old parameter values to new parameter values
            with timed("computegrad"):
                tmp_result = compute_lossandgrad(seg["ob"], seg["ac"], atarg)
                lossbefore = tmp_result[:-1]
                g = tmp_result[-1]
            lossbefore = allmean(np.array(lossbefore))
            g = allmean(g)
            if np.allclose(g, 0):
                print("Got zero gradient. not updating")
            else:
                with timed("cg"):
                    stepdir = cg(fisher_vector_product,
                                 g,
                                 cg_iters=cg_iters,
                                 verbose=rank == 0)
                assert np.isfinite(stepdir).all()
                shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / max_kl)
                # print("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = allmean(
                        np.array(compute_losses(seg["ob"], seg["ac"], atarg)))
                    surr = meanlosses[0]
                    kl = meanlosses[1]
                    improve = surr - surrbefore
                    print("Expected: %.3f Actual: %.3f" %
                          (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        print("Got non-finite value of losses -- bad!")
                    elif kl > max_kl * 1.5:
                        print("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        print("surrogate didn't improve. shrinking step.")
                    else:
                        print("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    print("couldn't compute a good step")
                    set_from_flat(thbefore)
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather(
                        (thnew.sum(),
                         vfadam.getflat().sum()))  # list of tuples
                    assert all(
                        np.allclose(ps, paramsums[0]) for ps in paramsums[1:])
            with timed("vf"):
                for _ in range(vf_iters):
                    for (mbob, mbret) in dataset.iterbatches(
                        (seg["ob"], seg["tdlamret"]),
                            include_final_partial_batch=False,
                            batch_size=128):
                        if hasattr(pi, "ob_rms"):
                            pi.ob_rms.update(
                                mbob)  # update running mean/std for policy
                        g = allmean(compute_vflossandgrad(mbob, mbret))
                        vfadam.update(g, vf_stepsize)

        print("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))

        # ------------------ Update D ------------------
        print("Optimizing Discriminator...")
        print(fmt_row(13, reward_giver.loss_name))
        ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob))
        batch_size = len(ob) // d_step
        d_losses = [
        ]  # list of tuples, each of which gives the loss for a minibatch
        for ob_batch, ac_batch in tqdm(
                dataset.iterbatches((ob, ac),
                                    include_final_partial_batch=False,
                                    batch_size=batch_size)):
            ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob_batch))
            # update running mean/std for reward_giver
            if hasattr(reward_giver, "obs_rms"):
                reward_giver.obs_rms.update(
                    np.concatenate((ob_batch, ob_expert), 0))
            tmp_result = reward_giver.lossandgrad(ob_batch, ac_batch,
                                                  ob_expert, ac_expert)
            newlosses = tmp_result[:-1]
            g = tmp_result[-1]
            d_adam.update(allmean(g), d_stepsize)
            d_losses.append(newlosses)
        print(fmt_row(13, np.mean(d_losses, axis=0)))

        timesteps_so_far += len(seg['ob'])
        iters_so_far += 1

        print("EpisodesSoFar", episodes_so_far)
        print("TimestepsSoFar", timesteps_so_far)
        print("TimeElapsed", time.time() - tstart)
Exemplo n.º 13
0
def learn(env, policy_fn, *,
        batch_size, # what to train on
        task_horizon,
        max_kl, cg_iters,
        gamma, lam, # advantage estimation
        entcoeff=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters =3,
        max_timesteps=0, max_episodes=0, max_iters=0,  # time constraint
        callback=None,
        weights_dir='.',
        per_decision = True,
        normalize = False,
        truncate_at = np.infty
        ):
    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    timesteps_per_batch = batch_size * task_horizon
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_fn("pi", ob_space, ac_space)
    oldpi = policy_fn("oldpi", ob_space, ac_space)
    atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = entcoeff * meanent

    vferr = tf.reduce_mean(tf.square(pi.vpred - ret))

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
    vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start+sz], shape))
        start += sz
    gvp = tf.add_n([tf.reduce_sum(g*tangent) for (g, tangent) in zipsame(klgrads, tangents)]) #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv)
        for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables())])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(colorize("done in %.3f seconds"%(time.time() - tstart), color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi, env, task_horizon, timesteps_per_batch, stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards

    assert sum([max_iters>0, max_timesteps>0, max_episodes>0])==1

    
    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************"%iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        
        #Params
        #"""
        params = pi.eval_param()
        #print(params)
        np.save(weights_dir+'/weights_'+str(iters_so_far), params)
        #"""

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
        vpredbefore = seg["vpred"] # predicted value function before udpate
        atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate

        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy

        args = seg["ob"], seg["ac"], atarg
        fvpargs = [arr[::5] for arr in args]
        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        assign_old_eq_new() # set old parameter values to new parameter values
        with timed("computegrad"):
            *lossbefore, g = compute_lossandgrad(*args)
        lossbefore = allmean(np.array(lossbefore))
        g = allmean(g)
        if np.allclose(g, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with timed("cg"):
                stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=rank==0)
            assert np.isfinite(stepdir).all()
            shs = .5*stepdir.dot(fisher_vector_product(stepdir))
            lm = np.sqrt(shs / max_kl)
            print('DOT: %s' % np.dot(stepdir, g))
            # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
            fullstep = stepdir / lm
            expectedimprove = g.dot(fullstep)
            surrbefore = lossbefore[0]
            stepsize = 1.0
            thbefore = get_flat()
            for _ in range(10):
                thnew = thbefore + fullstep * stepsize
                set_from_flat(thnew)
                meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args)))
                improve = surr - surrbefore
                logger.log("Expected: %.3f Actual: %.3f"%(expectedimprove, improve))
                if not np.isfinite(meanlosses).all():
                    logger.log("Got non-finite value of losses -- bad!")
                elif kl > max_kl * 1.5:
                    logger.log("violated KL constraint. shrinking step.")
                elif improve < 0:
                    logger.log("surrogate didn't improve. shrinking step.")
                else:
                    logger.log("Stepsize OK!")
                    break
                stepsize *= .5
            else:
                logger.log("couldn't compute a good step")
                set_from_flat(thbefore)
            if nworkers > 1 and iters_so_far % 20 == 0:
                paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum())) # list of tuples
                assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)

        with timed("vf"):

            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches((seg["ob"], seg["tdlamret"]),
                include_final_partial_batch=False, batch_size=64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)

        logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ob"],
                   seg["ac"],seg["rew"]) # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples
        lens, rews, states, actions, rewards = map(flatten_lists, zip(*listoflrpairs))
        
        disc_rews = []
        start = 0
        for ep_len in lens:
            end = start + ep_len
            disc = gamma + np.zeros(ep_len)
            disc[0] = 1
            disc = np.cumprod(disc)
            disc_rewards = np.array(rewards[start:end]) * disc
            disc_rews.append(np.sum(disc_rewards))
            start = end
            
        #Save importance weights
        simple_iw = pi.eval_simple_iw(states, 
                               actions,
                               rewards,
                               lens,
                               gamma=gamma,
                               behavioral=oldpi)
        np.save(weights_dir+'/iws_'+str(iters_so_far), simple_iw)
        #print(len(simple_iw), simple_iw)
        
        #Save returns
        ep_rets = np.array(disc_rews)
        np.save(weights_dir+'/rets_'+str(iters_so_far), ep_rets)
        #print(len(ep_rets), ep_rets)
        

        #lenbuffer.extend(lens)
        #rewbuffer.extend(rews)

        #Renyi
        """
        renyi_4 = np.mean(pi.eval_renyi(states, oldpi, 4))
        #print('Renyi:', renyi)
        #"""
        
        #Importance weights stats
        """
        avg_iw, var_iw, max_iw, ess = pi.eval_iw_stats(states, 
                               actions,
                               rewards,
                               lens,
                               gamma=gamma,
                               behavioral=oldpi,
                               per_decision=per_decision,
                               normalize=normalize,
                               truncate_at=truncate_at)
        #"""
        
        #Returns stats
        """
        avg_ret, var_ret, max_ret = pi.eval_ret_stats(states, 
                               actions,
                               rewards,
                               lens,
                               gamma=gamma,
                               behavioral=oldpi,
                               per_decision=per_decision,
                               normalize=normalize,
                               truncate_at=truncate_at)
        #"""

        #Performance
        #"""
        bound_delta = .2
        batch_size = len(lens)
        J = pi.eval_J(states,
                      actions,
                      rewards,
                      lens,
                      gamma=gamma,
                      behavioral=oldpi,
                      per_decision=per_decision,
                      normalize=normalize,
                      truncate_at=truncate_at)
        
        var_J = pi.eval_var_J(states,
                      actions,
                      rewards,
                      lens,
                      gamma=gamma,
                      behavioral=oldpi,
                      per_decision=per_decision,
                      normalize=normalize,
                      truncate_at=truncate_at)
        
        """
        bound = pi.eval_bound(states,
                      actions,
                      rewards,
                      lens,
                      gamma=gamma,
                      behavioral=oldpi,
                      per_decision=per_decision,
                      normalize=normalize,
                      truncate_at=truncate_at,
                      delta=bound_delta,
                      use_ess=True)
        #"""
        
        #Sample Renyi
        d2s = pi.eval_renyi(states, oldpi, 2)
        d2s_by_episode = []
        start = 0
        for ep_len in lens:
            end = start + ep_len
            d2s_by_episode = np.sum(d2s[start:end])
            start = end
        sample_d2 = np.mean(np.exp(d2s_by_episode))
        
        """
        grad_bound = pi.eval_grad_bound(states,
                      actions,
                      rewards,
                      lens,
                      gamma=gamma,
                      behavioral=oldpi,
                      per_decision=per_decision,
                      normalize=normalize,
                      truncate_at=truncate_at,
                      delta=bound_delta,
                      use_ess=True)
        print(grad_bound)
        #print('Target performance', J, '+-', np.sqrt(var_J/len(lens)))    
        #"""
        
        #Gradients
        """
        grad_J = pi.eval_grad_J(states,
                                       actions,
                                       rewards,
                                       lens,
                                       behavioral=oldpi,
                                       per_decision=True)
        grad_var_J = pi.eval_grad_var_J(states,
                                       actions,
                                       rewards,
                                       lens,
                                       behavioral=oldpi,
                                       per_decision=True)
        print('Target performance grads', grad_J, grad_var_J)    
        #"""
    
        #Student-t bound
        """
        bound = pi.eval_bound(states,
                                 actions,
                                 rewards,
                                 lens,
                                 behavioral=oldpi,
                                 per_decision=True)
        #print('Bound comp. time', time.time() - checkpoint)
        print("StudentTBound", bound)
        #"""
    
        
        #Student-t bound grad
        """
        bound_grad = pi.eval_bound_grad(states,
                                 actions,
                                 rewards,
                                 lens,
                                 behavioral=oldpi,
                                 per_decision=True)
        print("StudentTBound grad", bound_grad)
        #"""
    
        #Fisher
        """
        checkpoint = time.time()
        fisher = oldpi.eval_fisher(states, actions, lens, behavioral=None)
        #print(fisher)
        assert np.array_equal(fisher, fisher.T)
        print('Fisher comp. time', time.time() - checkpoint)
        checkpoint = time.time()
        natural = np.linalg.solve(fisher + 1e-12*np.eye(fisher.shape[0]), grad_J)
        print(natural)
        #print('Fisher vector product time:', time.time() - checkpoint)
        #"""
        
        #Logging
        logger.record_tabular("Step_size", stepsize)
        #logger.record_tabular("Our_bound", bound)
        #logger.record_tabular("Reny_4", renyi_4)
        logger.record_tabular("SampleRenyi2", sample_d2)
        #logger.record_tabular("Max_iw", max_iw)
        #logger.record_tabular("Ess", ess)
        #logger.record_tabular("Avg_iw", avg_iw)
        #logger.record_tabular("Var_iw", var_iw)
        #logger.record_tabular("Max_ret", max_ret)
        #logger.record_tabular("Avg_ret", avg_ret)
        #logger.record_tabular("Var_ret", var_ret)
        logger.record_tabular("EpLenMean", np.mean(lens))
        logger.record_tabular("DiscEpRewMean", np.mean(disc_rews))
        logger.record_tabular("EpRewMean", np.mean(rews))
        logger.record_tabular("EpThisIter", len(lens))
        logger.record_tabular("J_hat", J)
        logger.record_tabular("Var_J", var_J)
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank==0:
            logger.dump_tabular()
Exemplo n.º 14
0
def learn(
        env,
        policy_func,
        *,
        timesteps_per_batch,
        max_kl,
        cg_iters,
        gamma,
        lam,
        entcoeff=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters=3,
        max_timesteps=0,
        max_episodes=0,
        max_iters=0,
        callback=None,
        # GAIL Params
        pretrained_weight=None,
        reward_giver=None,
        expert_dataset=None,
        rank=0,
        save_per_iter=1,
        ckpt_dir="/tmp/gail/ckpt/",
        g_step=1,
        d_step=1,
        task_name="task_name",
        d_stepsize=3e-4,
        using_gail=True):
    """
    learns a GAIL policy using the given environment

    :param env: (Gym Environment) the environment
    :param policy_func: (function (str, Gym Space, Gym Space, bool): MLPPolicy) policy generator
    :param timesteps_per_batch: (int) the number of timesteps to run per batch (horizon)
    :param max_kl: (float) the kullback leiber loss threashold
    :param cg_iters: (int) the number of iterations for the conjugate gradient calculation
    :param gamma: (float) the discount value
    :param lam: (float) GAE factor
    :param entcoeff: (float) the weight for the entropy loss
    :param cg_damping: (float) the compute gradient dampening factor
    :param vf_stepsize: (float) the value function stepsize
    :param vf_iters: (int) the value function's number iterations for learning
    :param max_timesteps: (int) the maximum number of timesteps before halting
    :param max_episodes: (int) the maximum number of episodes before halting
    :param max_iters: (int) the maximum number of training iterations  before halting
    :param callback: (function (dict, dict)) the call back function, takes the local and global attribute dictionary
    :param pretrained_weight: (str) the save location for the pretrained weights
    :param reward_giver: (TransitionClassifier) the reward predicter from obsevation and action
    :param expert_dataset: (MujocoDset) the dataset manager
    :param rank: (int) the rank of the mpi thread
    :param save_per_iter: (int) the number of iterations before saving
    :param ckpt_dir: (str) the location for saving checkpoints
    :param g_step: (int) number of steps to train policy in each epoch
    :param d_step: (int) number of steps to train discriminator in each epoch
    :param task_name: (str) the name of the task (can be None)
    :param d_stepsize: (float) the reward giver stepsize
    :param using_gail: (bool) using the GAIL model
    """

    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    sess = tf_util.single_threaded_session()
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    policy = policy_func("pi", ob_space, ac_space, sess=sess)
    old_policy = policy_func("oldpi",
                             ob_space,
                             ac_space,
                             sess=sess,
                             placeholders={
                                 "obs": policy.obs_ph,
                                 "stochastic": policy.stochastic_ph
                             })

    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    observation = policy.obs_ph
    action = policy.pdtype.sample_placeholder([None])

    kloldnew = old_policy.proba_distribution.kl(policy.proba_distribution)
    ent = policy.proba_distribution.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = entcoeff * meanent

    vferr = tf.reduce_mean(tf.square(policy.vpred - ret))

    # advantage * pnew / pold
    ratio = tf.exp(
        policy.proba_distribution.logp(action) -
        old_policy.proba_distribution.logp(action))
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = policy.get_trainable_variables()
    if using_gail:
        var_list = [
            v for v in all_var_list
            if v.name.startswith("pi/pol") or v.name.startswith("pi/logstd")
        ]
        vf_var_list = [v for v in all_var_list if v.name.startswith("pi/vff")]
        assert len(var_list) == len(vf_var_list) + 1
        d_adam = MpiAdam(reward_giver.get_trainable_variables())
    else:
        var_list = [
            v for v in all_var_list if v.name.split("/")[1].startswith("pol")
        ]
        vf_var_list = [
            v for v in all_var_list if v.name.split("/")[1].startswith("vf")
        ]

    vfadam = MpiAdam(vf_var_list, sess=sess)
    get_flat = tf_util.GetFlat(var_list, sess=sess)
    set_from_flat = tf_util.SetFromFlat(var_list, sess=sess)

    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        var_size = tf_util.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + var_size],
                                   shape))
        start += var_size
    gvp = tf.add_n([
        tf.reduce_sum(grad * tangent)
        for (grad, tangent) in zipsame(klgrads, tangents)
    ])  # pylint: disable=E1111
    fvp = tf_util.flatgrad(gvp, var_list)

    assign_old_eq_new = tf_util.function(
        [], [],
        updates=[
            tf.assign(oldv, newv) for (oldv, newv) in zipsame(
                old_policy.get_variables(), policy.get_variables())
        ])
    compute_losses = tf_util.function([observation, action, atarg], losses)
    compute_lossandgrad = tf_util.function(
        [observation, action, atarg],
        losses + [tf_util.flatgrad(optimgain, var_list)])
    compute_fvp = tf_util.function([flat_tangent, observation, action, atarg],
                                   fvp)
    compute_vflossandgrad = tf_util.function([observation, ret],
                                             tf_util.flatgrad(
                                                 vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            start_time = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - start_time),
                         color='magenta'))
        else:
            yield

    def allmean(arr):
        assert isinstance(arr, np.ndarray)
        out = np.empty_like(arr)
        MPI.COMM_WORLD.Allreduce(arr, out, op=MPI.SUM)
        out /= nworkers
        return out

    tf_util.initialize(sess=sess)

    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)

    if using_gail:
        d_adam.sync()
    vfadam.sync()

    if rank == 0:
        print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    if using_gail:
        seg_gen = traj_segment_generator(policy,
                                         env,
                                         timesteps_per_batch,
                                         stochastic=True,
                                         reward_giver=reward_giver,
                                         gail=True)
    else:
        seg_gen = traj_segment_generator(policy,
                                         env,
                                         timesteps_per_batch,
                                         stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    t_start = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    if using_gail:
        true_rewbuffer = deque(maxlen=40)
        #  Stats not used for now
        #  g_loss_stats = Stats(loss_names)
        #  d_loss_stats = Stats(reward_giver.loss_name)
        #  ep_stats = Stats(["True_rewards", "Rewards", "Episode_length"])

        # if provide pretrained weight
        if pretrained_weight is not None:
            tf_util.load_state(pretrained_weight,
                               var_list=policy.get_variables())

    while True:
        if callback:
            callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break

        # Save model
        if using_gail and rank == 0 and iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            fname = os.path.join(ckpt_dir, task_name)
            os.makedirs(os.path.dirname(fname), exist_ok=True)
            saver = tf.train.Saver()
            saver.save(sess, fname)

        logger.log("********** Iteration %i ************" % iters_so_far)

        def fisher_vector_product(vec):
            return allmean(compute_fvp(vec, *fvpargs,
                                       sess=sess)) + cg_damping * vec

        # ------------------ Update G ------------------
        logger.log("Optimizing Policy...")
        # g_step = 1 when not using GAIL
        for _ in range(g_step):
            with timed("sampling"):
                seg = seg_gen.__next__()
            add_vtarg_and_adv(seg, gamma, lam)
            # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
            observation, action, atarg, tdlamret = seg["ob"], seg["ac"], seg[
                "adv"], seg["tdlamret"]
            vpredbefore = seg[
                "vpred"]  # predicted value function before udpate
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate

            if hasattr(policy, "ret_rms"):
                policy.ret_rms.update(tdlamret)
            if hasattr(policy, "ob_rms"):
                policy.ob_rms.update(
                    observation)  # update running mean/std for policy

            args = seg["ob"], seg["ac"], atarg
            fvpargs = [arr[::5] for arr in args]

            assign_old_eq_new(sess=sess)

            with timed("computegrad"):
                *lossbefore, grad = compute_lossandgrad(*args, sess=sess)
            lossbefore = allmean(np.array(lossbefore))
            grad = allmean(grad)
            if np.allclose(grad, 0):
                logger.log("Got zero gradient. not updating")
            else:
                with timed("cg"):
                    stepdir = conjugate_gradient(fisher_vector_product,
                                                 grad,
                                                 cg_iters=cg_iters,
                                                 verbose=rank == 0)
                assert np.isfinite(stepdir).all()
                shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                # abs(shs) to avoid taking square root of negative values
                lagrange_multiplier = np.sqrt(abs(shs) / max_kl)
                # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lagrange_multiplier
                expectedimprove = grad.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    mean_losses = surr, kl_loss, *_ = allmean(
                        np.array(compute_losses(*args, sess=sess)))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f" %
                               (expectedimprove, improve))
                    if not np.isfinite(mean_losses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl_loss > max_kl * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather(
                        (thnew.sum(),
                         vfadam.getflat().sum()))  # list of tuples
                    assert all(
                        np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

            with timed("vf"):
                for _ in range(vf_iters):
                    for (mbob, mbret) in dataset.iterbatches(
                        (seg["ob"], seg["tdlamret"]),
                            include_final_partial_batch=False,
                            batch_size=128):
                        if hasattr(policy, "ob_rms"):
                            policy.ob_rms.update(
                                mbob)  # update running mean/std for policy
                        grad = allmean(
                            compute_vflossandgrad(mbob, mbret, sess=sess))
                        vfadam.update(grad, vf_stepsize)

        for (loss_name, loss_val) in zip(loss_names, mean_losses):
            logger.record_tabular(loss_name, loss_val)

        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))

        if using_gail:
            # ------------------ Update D ------------------
            logger.log("Optimizing Discriminator...")
            logger.log(fmt_row(13, reward_giver.loss_name))
            ob_expert, ac_expert = expert_dataset.get_next_batch(
                len(observation))
            batch_size = len(observation) // d_step
            d_losses = [
            ]  # list of tuples, each of which gives the loss for a minibatch
            for ob_batch, ac_batch in dataset.iterbatches(
                (observation, action),
                    include_final_partial_batch=False,
                    batch_size=batch_size):
                ob_expert, ac_expert = expert_dataset.get_next_batch(
                    len(ob_batch))
                # update running mean/std for reward_giver
                if hasattr(reward_giver, "obs_rms"):
                    reward_giver.obs_rms.update(
                        np.concatenate((ob_batch, ob_expert), 0))
                *newlosses, grad = reward_giver.lossandgrad(
                    ob_batch, ac_batch, ob_expert, ac_expert)
                d_adam.update(allmean(grad), d_stepsize)
                d_losses.append(newlosses)
            logger.log(fmt_row(13, np.mean(d_losses, axis=0)))

            lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"]
                       )  # local values
            listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
            lens, rews, true_rets = map(flatten_lists, zip(*listoflrpairs))
            true_rewbuffer.extend(true_rets)
        else:
            lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
            listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
            lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        if using_gail:
            logger.record_tabular("EpTrueRewMean", np.mean(true_rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - t_start)

        if rank == 0:
            logger.dump_tabular()
Exemplo n.º 15
0
def learn(
        env,
        policy_fn,
        *,
        timesteps_per_batch,  # what to train on
        epsilon,
        beta,
        cg_iters,
        gamma,
        lam,  # advantage estimation
        trial,
        sess,
        method,
        entcoeff=0.0,
        cg_damping=1e-2,
        kl_target=0.01,
        crosskl_coeff=0.01,
        vf_stepsize=3e-4,
        vf_iters=3,
        max_timesteps=0,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None,
        TRPO=False):
    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    total_space = env.total_space
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_fn("pi", ob_space, ac_space, ob_name="ob")
    oldpi = policy_fn("oldpi", ob_space, ac_space, ob_name="ob")

    gpi = policy_fn("gpi", total_space, ac_space, ob_name="gob")
    goldpi = policy_fn("goldpi", total_space, ac_space, ob_name="gob")

    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    gatarg = tf.placeholder(dtype=tf.float32, shape=[None])
    gret = tf.placeholder(dtype=tf.float32, shape=[None])

    ob = U.get_placeholder_cached(name="ob")
    gob = U.get_placeholder_cached(name='gob')
    ac = pi.pdtype.sample_placeholder([None])
    crosskl_c = tf.placeholder(dtype=tf.float32, shape=[])
    # crosskl_c = 0.01

    kloldnew = oldpi.pd.kl(pi.pd)
    gkloldnew = goldpi.pd.kl(gpi.pd)

    #TODO: check if it can work in this way
    # crosskl_ob = pi.pd.kl(goldpi.pd)
    # crosskl_gob = gpi.pd.kl(oldpi.pd)
    crosskl_gob = pi.pd.kl(gpi.pd)
    crosskl_ob = gpi.pd.kl(pi.pd)
    # crosskl

    pdmean = pi.pd.mean
    pdstd = pi.pd.std
    gpdmean = gpi.pd.mean
    gpdstd = gpi.pd.std

    ent = pi.pd.entropy()
    gent = gpi.pd.entropy()

    old_entropy = oldpi.pd.entropy()
    gold_entropy = goldpi.pd.entropy()

    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    meancrosskl = tf.reduce_mean(crosskl_ob)

    # meancrosskl = tf.maximum(tf.reduce_mean(crosskl_ob - 100), 0)

    gmeankl = tf.reduce_mean(gkloldnew)
    gmeanent = tf.reduce_mean(gent)
    gmeancrosskl = tf.reduce_mean(crosskl_gob)

    vferr = tf.reduce_mean(tf.square(pi.vpred - ret))
    gvferr = tf.reduce_mean(tf.square(gpi.vpred - gret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    gratio = tf.exp(gpi.pd.logp(ac) - goldpi.pd.logp(ac))

    # Ratio objective
    # surrgain = tf.reduce_mean(ratio * atarg)
    # gsurrgain = tf.reduce_mean(gratio * gatarg)

    # Log objective
    surrgain = tf.reduce_mean(pi.pd.logp(ac) * atarg)
    gsurrgain = tf.reduce_mean(gpi.pd.logp(ac) * gatarg)

    # optimgain = surrgain + crosskl_c * meancrosskl
    optimgain = surrgain
    losses = [
        optimgain, meankl, meancrosskl, surrgain, meanent,
        tf.reduce_mean(ratio)
    ]
    loss_names = [
        "optimgain", "meankl", "meancrosskl", "surrgain", "entropy", "ratio"
    ]

    # goptimgain = gsurrgain + crosskl_c * gmeancrosskl
    goptimgain = gsurrgain

    glosses = [
        goptimgain, gmeankl, gmeancrosskl, gsurrgain, gmeanent,
        tf.reduce_mean(gratio)
    ]
    gloss_names = [
        "goptimgain", "gmeankl", "gmeancrosskl", "gsurrgain", "gentropy",
        "gratio"
    ]

    dist = meankl
    gdist = gmeankl

    all_pi_var_list = pi.get_trainable_variables()
    all_var_list = [
        v for v in all_pi_var_list if v.name.split("/")[0].startswith("pi")
    ]
    var_list = [
        v for v in all_var_list if v.name.split("/")[1].startswith("pol")
    ]
    vf_var_list = [
        v for v in all_var_list if v.name.split("/")[1].startswith("vf")
    ]
    vfadam = MpiAdam(vf_var_list)
    poladam = MpiAdam(var_list)

    gall_gpi_var_list = gpi.get_trainable_variables()
    gall_var_list = [
        v for v in gall_gpi_var_list if v.name.split("/")[0].startswith("gpi")
    ]
    gvar_list = [
        v for v in gall_var_list if v.name.split("/")[1].startswith("pol")
    ]
    gvf_var_list = [
        v for v in gall_var_list if v.name.split("/")[1].startswith("vf")
    ]
    gvfadam = MpiAdam(gvf_var_list)
    # gpoladpam = MpiAdam(gvar_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    # crossklgrads = tf.gradients(meancrosskl, var_list)

    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    gget_flat = U.GetFlat(gvar_list)
    gset_from_flat = U.SetFromFlat(gvar_list)
    gklgrads = tf.gradients(gdist, gvar_list)
    # gcrossklgrads = tf.gradients(gmeancrosskl, gvar_list)

    gflat_tangent = tf.placeholder(dtype=tf.float32,
                                   shape=[None],
                                   name="gflat_tan")
    gshapes = [var.get_shape().as_list() for var in gvar_list]
    gstart = 0
    gtangents = []
    for shape in gshapes:
        sz = U.intprod(shape)
        gtangents.append(tf.reshape(gflat_tangent[gstart:gstart + sz], shape))
        gstart += sz
    ggvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(gklgrads, gtangents)
    ])  #pylint: disable=E1111
    gfvp = U.flatgrad(ggvp, gvar_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])

    gassign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(goldpi.get_variables(), gpi.get_variables())
        ])

    compute_losses = U.function([crosskl_c, gob, ob, ac, atarg], losses)
    compute_lossandgrad = U.function([crosskl_c, gob, ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))
    compute_crossklandgrad = U.function([ob, gob],
                                        U.flatgrad(meancrosskl, var_list))

    gcompute_losses = U.function([crosskl_c, ob, gob, ac, gatarg], glosses)
    gcompute_lossandgrad = U.function([crosskl_c, ob, gob, ac, gatarg],
                                      glosses +
                                      [U.flatgrad(goptimgain, gvar_list)])
    gcompute_fvp = U.function([gflat_tangent, gob, ac, gatarg], gfvp)
    gcompute_vflossandgrad = U.function([gob, gret],
                                        U.flatgrad(gvferr, gvf_var_list))
    # compute_gcrossklandgrad = U.function([gob, ob], U.flatgrad(gmeancrosskl, gvar_list))

    saver = tf.train.Saver()

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()

    guided_initilizer(gpol=gvar_list,
                      gvf=gvf_var_list,
                      fpol=var_list,
                      fvf=vf_var_list)

    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    vfadam.sync()
    poladam.sync()
    print("Init final policy param sum", th_init.sum(), flush=True)

    gth_init = gget_flat()
    MPI.COMM_WORLD.Bcast(gth_init, root=0)
    gset_from_flat(gth_init)
    gvfadam.sync()
    # gpoladpam.sync()
    print("Init guided policy param sum", gth_init.sum(), flush=True)

    # Initialize eta, omega optimizer
    init_eta = 0.5
    init_omega = 2.0
    eta_omega_optimizer = EtaOmegaOptimizer(beta, epsilon, init_eta,
                                            init_omega)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     gpi,
                                     env,
                                     timesteps_per_batch,
                                     stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    num_iters = max_timesteps // timesteps_per_batch
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************" % iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
            "tdlamret"]
        gob, gatarg, gtdlamret = seg["gob"], seg["gadv"], seg["gtdlamret"]

        vpredbefore = seg["vpred"]  # predicted value function before udpate
        gvpredbefore = seg["gvpred"]

        atarg = (atarg - atarg.mean()
                 ) / atarg.std()  # standardized advantage function estimate
        gatarg = (gatarg - gatarg.mean()) / gatarg.std()

        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"):
            pi.ob_rms.update(ob)  # update running mean/std for policy

        if hasattr(gpi, "ret_rms"): gpi.ret_rms.update(gtdlamret)
        if hasattr(gpi, "ob_rms"): gpi.ob_rms.update(gob)

        args = crosskl_coeff, seg["gob"], seg["ob"], seg["ac"], atarg
        fvpargs = [arr[::5] for arr in args[2:]]

        gargs = crosskl_coeff, seg["ob"], seg["gob"], seg["ac"], gatarg
        gfvpargs = [arr[::5] for arr in gargs[2:]]

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        def gfisher_vector_product(p):
            return allmean(gcompute_fvp(p, *gfvpargs)) + cg_damping * p

        assign_old_eq_new()  # set old parameter values to new parameter values
        gassign_old_eq_new()

        with timed("computegrad"):
            *lossbefore, g = compute_lossandgrad(*args)
            *glossbefore, gg = gcompute_lossandgrad(*gargs)

        lossbefore = allmean(np.array(lossbefore))
        g = allmean(g)

        glossbefore = allmean(np.array(glossbefore))
        gg = allmean(gg)

        if np.allclose(g, 0) or np.allclose(gg, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with timed("cg"):
                stepdir = cg(fisher_vector_product,
                             g,
                             cg_iters=cg_iters,
                             verbose=rank == 0)
                gstepdir = cg(gfisher_vector_product,
                              gg,
                              cg_iters=cg_iters,
                              verbose=rank == 0)
            assert np.isfinite(gstepdir).all()
            assert np.isfinite(stepdir).all()

            if TRPO:
                #
                # TRPO specific code.
                # Find correct step size using line search
                #
                #TODO: also enable guided learning for TRPO
                shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / epsilon)
                # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(
                        np.array(compute_losses(*args)))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f" %
                               (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > epsilon * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)
            else:
                #
                # COPOS specific implementation.
                #

                copos_update_dir = stepdir
                gcopos_update_dir = gstepdir

                # Split direction into log-linear 'w_theta' and non-linear 'w_beta' parts
                w_theta, w_beta = pi.split_w(copos_update_dir)
                gw_theta, gw_beta = gpi.split_w(gcopos_update_dir)

                # q_beta(s,a) = \grad_beta \log \pi(a|s) * w_beta
                #             = features_beta(s) * K^T * Prec * a
                # q_beta = self.target.get_q_beta(features_beta, actions)

                Waa, Wsa = pi.w2W(w_theta)
                wa = pi.get_wa(ob, w_beta)

                gWaa, gWsa = gpi.w2W(gw_theta)
                gwa = gpi.get_wa(gob, gw_beta)

                varphis = pi.get_varphis(ob)
                gvarphis = gpi.get_varphis(gob)

                # Optimize eta and omega
                tmp_ob = np.zeros(
                    (1, ) + ob_space.shape
                )  # We assume that entropy does not depend on the NN
                old_ent = old_entropy.eval({oldpi.ob: tmp_ob})[0]
                eta, omega = eta_omega_optimizer.optimize(
                    w_theta, Waa, Wsa, wa, varphis, pi.get_kt(),
                    pi.get_prec_matrix(), pi.is_new_policy_valid, old_ent)
                logger.log("Initial eta of final policy: " + str(eta) +
                           " and omega: " + str(omega))

                gtmp_ob = np.zeros((1, ) + total_space.shape)
                gold_ent = gold_entropy.eval({goldpi.ob: gtmp_ob})[0]
                geta, gomega = eta_omega_optimizer.optimize(
                    gw_theta, gWaa, gWsa, gwa, gvarphis, gpi.get_kt(),
                    gpi.get_prec_matrix(), gpi.is_new_policy_valid, gold_ent)
                logger.log("Initial eta of guided policy: " + str(geta) +
                           " and omega: " + str(gomega))

                current_theta_beta = get_flat()
                prev_theta, prev_beta = pi.all_to_theta_beta(
                    current_theta_beta)

                gcurrent_theta_beta = gget_flat()
                gprev_theta, gprev_beta = gpi.all_to_theta_beta(
                    gcurrent_theta_beta)

                for i in range(2):
                    # Do a line search for both theta and beta parameters by adjusting only eta
                    eta = eta_search(w_theta, w_beta, eta, omega, allmean,
                                     compute_losses, get_flat, set_from_flat,
                                     pi, epsilon, args)
                    logger.log("Updated eta of final policy, eta: " +
                               str(eta) + " and omega: " + str(omega))

                    # Find proper omega for new eta. Use old policy parameters first.
                    set_from_flat(pi.theta_beta_to_all(prev_theta, prev_beta))
                    eta, omega = \
                        eta_omega_optimizer.optimize(w_theta, Waa, Wsa, wa, varphis, pi.get_kt(),
                                                     pi.get_prec_matrix(), pi.is_new_policy_valid, old_ent, eta)
                    logger.log("Updated omega of final policy, eta: " +
                               str(eta) + " and omega: " + str(omega))

                    geta = eta_search(gw_theta, gw_beta, geta, gomega, allmean,
                                      gcompute_losses, gget_flat,
                                      gset_from_flat, gpi, epsilon, gargs)
                    logger.log("updated eta of guided policy, eta:" +
                               str(geta) + "and omega:" + str(gomega))

                    gset_from_flat(
                        gpi.theta_beta_to_all(gprev_theta, gprev_beta))
                    geta, gomega = eta_omega_optimizer.optimize(
                        gw_theta, gWaa, gWsa, gwa, gvarphis, gpi.get_kt(),
                        gpi.get_prec_matrix(), gpi.is_new_policy_valid,
                        gold_ent, geta)
                    logger.log("Updated omega of guided policy, eta:" +
                               str(geta) + "and omega:" + str(gomega))

                # Use final policy
                logger.log("Final eta of final policy: " + str(eta) +
                           " and omega: " + str(omega))
                logger.log("Final eta of guided policy: " + str(geta) +
                           "and omega:" + str(gomega))

                cur_theta = (eta * prev_theta +
                             w_theta.reshape(-1, )) / (eta + omega)
                cur_beta = prev_beta + w_beta.reshape(-1, ) / eta
                set_from_flat(pi.theta_beta_to_all(cur_theta, cur_beta))

                gcur_theta = (geta * gprev_theta +
                              gw_theta.reshape(-1, )) / (geta + gomega)
                gcur_beta = gprev_beta + gw_beta.reshape(-1, ) / geta
                gset_from_flat(gpi.theta_beta_to_all(gcur_theta, gcur_beta))

                meanlosses = surr, kl, crosskl, *_ = allmean(
                    np.array(compute_losses(*args)))
                gmeanlosses = gsurr, gkl, gcrosskl, *_ = allmean(
                    np.array(gcompute_losses(*gargs)))

                # poladam.update(allmean(compute_crossklandgrad(ob, gob)), vf_stepsize)
                # gpoladpam.update(allmean(compute_gcrossklandgrad(gob, ob)), vf_stepsize)

                for _ in range(vf_iters):
                    for (mbob, mbgob) in dataset.iterbatches(
                        (seg["ob"], seg["gob"]),
                            include_final_partial_batch=False,
                            batch_size=64):
                        g = allmean(compute_crossklandgrad(mbob, mbgob))
                        poladam.update(g, vf_stepsize)
                # pd_crosskl = np.mean((crosskl, gcrosskl))
                # pd_crosskl = crosskl

                # if pd_crosskl < kl_target / 2:
                #     print("KL divergence between guided policy and final control policy is small, reduce the coefficient")
                #     crosskl_coeff /= 1.5
                # elif pd_crosskl > kl_target * 2:
                #     print("KL divergence between guided policy and final control policy is large, increse the coefficient")
                #     crosskl_coeff *= 1.5
                # crosskl_coeff = np.clip(crosskl_coeff, 1e-4, 30)

            # if nworkers > 1 and iters_so_far % 20 == 0:
            #     paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum())) # list of tuples
            #     assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)

        for (lossname, lossval) in zip(gloss_names, gmeanlosses):
            logger.record_tabular(lossname, lossval)

        with timed("vf"):
            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches(
                    (seg["ob"], seg["tdlamret"]),
                        include_final_partial_batch=False,
                        batch_size=64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)
                for (mbob, mbret) in dataset.iterbatches(
                    (seg["gob"], seg["gtdlamret"]),
                        include_final_partial_batch=False,
                        batch_size=64):
                    gg = allmean(gcompute_vflossandgrad(mbob, mbret))
                    gvfadam.update(gg, vf_stepsize)

        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))
        logger.record_tabular("gev_tdlam_before",
                              explained_variance(gvpredbefore, gtdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        logger.record_tabular("CrossKLCoeff :", crosskl_coeff)
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        logger.record_tabular("Name", method)
        logger.record_tabular("Iteration", iters_so_far)
        logger.record_tabular("trial", trial)

        if rank == 0:
            logger.dump_tabular()

        if iters_so_far % 100 == 0 or iters_so_far == 1 or iters_so_far == num_iters:
            # sess = tf.get_default_session()
            checkdir = get_dir(osp.join(logger.get_dir(), 'checkpoints'))
            savepath = osp.join(checkdir, '%.5i.ckpt' % iters_so_far)
            saver.save(sess, save_path=savepath)
            print("save model to path:", savepath)
Exemplo n.º 16
0
def hybrid_learn(env, policy_func, reward_giver, rank,
          *,
          policy_step, boundary_step, entcoeff, save_per_iter,
          ckpt_dir, log_dir, timesteps_per_batch, task_name_1, task_name_2,
          gamma, lam,
          max_kl, cg_iters, cg_damping=1e-2,
          vf_stepsize=3e-4, d_stepsize=3e-4, vf_iters=3,
          max_timesteps=0, max_episodes=0, max_iters=0,
          callback=None
          ):

    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space

    pi_task1 = policy_func("pi_task1", ob_space, ac_space)
    oldpi_task1 = policy_func("oldpi_task1", ob_space, ac_space)

    pi_task2 = policy_func("pi_task2", ob_space, ac_space)
    oldpi_task2 = policy_func("oldpi_task2", ob_space, ac_space)

    atarg_task1 = tf.placeholder(dtype=tf.float32, shape=[None])  # Target advantage function (if applicable)
    ret_task1 = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    atarg_task2 = tf.placeholder(dtype=tf.float32, shape=[None])  # Target advantage function (if applicable)
    ret_task2 = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ob_task1 = U.get_placeholder_cached(name="ob_task1")
    ac_task1 = pi_task1.pdtype.sample_placeholder([None])

    ob_task2 = U.get_placeholder_cached(name="ob_task2")
    ac_task2 = pi_task2.pdtype.sample_placeholder([None])

    kloldnew_task1 = oldpi_task1.pd.kl(pi_task1.pd)
    ent_task1 = pi_task1.pd.entropy()
    meankl_task1 = tf.reduce_mean(kloldnew_task1)
    meanent_task1 = tf.reduce_mean(ent_task1)
    entbonus_task1 = entcoeff_task1 * meanent_task1

    kloldnew_task2 = oldpi_task2.pd.kl(pi_task2.pd)
    ent_task2 = pi_task2.pd.entropy()
    meankl_task2 = tf.reduce_mean(kloldnew_task2)
    meanent_task2 = tf.reduce_mean(ent_task2)
    entbonus_task2 = entcoeff_task2 * meanent_task2

    vferr_task1 = tf.reduce_mean(tf.square(pi_task1.vpred - ret_task1))
    vferr_task2 = tf.reduce_mean(tf.square(pi_task2.vpred - ret_task2))

    ratio_task1 = tf.exp(pi_task1.pd.logp(ac) - oldpi_task1.pd.logp(ac))  # advantage * pnew / pold
    ratio_task2 = tf.exp(pi_task2.pd.logp(ac) - oldpi_task2.pd.logp(ac))  # advantage * pnew / pold


    surrgain_task1 = tf.reduce_mean(ratio_task1 * atarg_task1)
    surrgain_task2 = tf.reduce_mean(ratio_task2 * atarg_task2)

    optimgain_task1 = surrgain_task1 + entbonus_task1
    optimgain_task2 = surrgain_task2 + entbonus_task2

    optimgain = optimgain_task1 + optimgain_task2
    meankl = meankl_task1 +  meankl_task2
    entbonus = entbonus_task1 + entbonus_task2
    surrgain = surrgain_task1 + surrgain_task2
    meanent = meanent_task1 + meanent_task2

    losses_task1 = [optimgain_task1, meankl_task1, 
            entbonus_task1, surrgain_task1, meanent_task1]
    losses_task2 = [optimgain_task2, meankl_task2, 
            entbonus_task2, surrgain_task2, meanent_task2]

    # losses = [optimgain_task1, optimgain_task2, meankl_task1, meankl_task2, 
    #         entbonus_task1, entbonus_task2, surrgain_task1, surrgain_task2,
    #         meanent_task1, meanent_task2]
    loss_names = ['optimgain_task1', 'optimgain_task2', 'meankl_task1', 'meankl_task2', 
            'entbonus_task1', 'entbonus_task2', 'surrgain_task1', 'surrgain_task2',
            'meanent_task1', 'meanent_task2']

    dist_task1 = meankl_task1
    dist_task2 = meankl_task2

    all_var_list_task1 = pi_task1.get_trainable_variables()
    var_list_task1 = [v for v in all_var_list_task1 if v.name.startswith("pi/pol") or v.name.startswith("pi/logstd")]
    vf_var_list_task1 = [v for v in all_var_list_task1 if v.name.startswith("pi/vff")]
    assert len(var_list_task1) == len(vf_var_list_task1) + 1
    # d_adam = MpiAdam(reward_giver.get_trainable_variables())
    vfadam_task1 = MpiAdam(vf_var_list_task1)

    all_var_list_task2 = pi_task2.get_trainable_variables()
    var_list_task2 = [v for v in all_var_list_task2 if v.name.startswith("pi/pol") or v.name.startswith("pi/logstd")]
    vf_var_list_task2 = [v for v in all_var_list_task2 if v.name.startswith("pi/vff")]
    assert len(var_list_task2) == len(vf_var_list_task2) + 1
    # d_adam = MpiAdam(reward_giver.get_trainable_variables())
    vfadam_task2 = MpiAdam(vf_var_list_task2)

    get_flat_task1 = U.GetFlat(var_list_task1)
    set_from_flat_task1 = U.SetFromFlat(var_list_task1)
    klgrads_task1 = tf.gradients(dist_task1, var_list_task1)
    flat_tangent_task1 = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan_task1")
    shapes_task1 = [var.get_shape().as_list() for var in var_list_task1]
    start = 0
    tangents_task1 = []
    for shape in shapes_task1:
        sz = U.intprod(shape)
        tangents_task1.append(tf.reshape(flat_tangent_task1[start:start+sz], shape))
        start += sz
    gvp_task1 = tf.add_n([tf.reduce_sum(g*tangent) for (g, tangent) in zipsame(klgrads_task1, tangents_task1)])  # pylint: disable=E1111
    fvp_task1 = U.flatgrad(gvp_task1, var_list_task1)

    get_flat_task2 = U.GetFlat(var_list_task2)
    set_from_flat_task2 = U.SetFromFlat(var_list_task2)
    klgrads_task2 = tf.gradients(dist_task2, var_list_task2)
    flat_tangent_task2 = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan_task2")
    shapes_task2 = [var.get_shape().as_list() for var in var_list_task2]
    start = 0
    tangents_task2 = []
    for shape in shapes_task2:
        sz = U.intprod(shape)
        tangents_task2.append(tf.reshape(flat_tangent_task2[start:start+sz], shape))
        start += sz
    gvp_task2 = tf.add_n([tf.reduce_sum(g*tangent) for (g, tangent) in zipsame(klgrads_task2, tangents_task2)])  # pylint: disable=E1111
    fvp_task2 = U.flatgrad(gvp_task2, var_list)_task2

    assign_old_eq_new_task1 = U.function([], [], updates=[tf.assign(oldv, newv)
                                                    for (oldv, newv) in zipsame(oldpi_task1.get_variables(), pi_task1.get_variables())])

    assign_old_eq_new_task2 = U.function([], [], updates=[tf.assign(oldv, newv)
                                                    for (oldv, newv) in zipsame(oldpi_task2.get_variables(), pi_task2.get_variables())])


    compute_losses_task1 = U.function([ob, ac, atarg_task1], losses_task1)
    compute_lossandgrad_task1 = U.function([ob, ac, atarg_task1], losses_task1 + [U.flatgrad(optimgain_task1, var_list_task1)])
    compute_fvp_task1 = U.function([flat_tangent_task1, ob, ac, atarg_task1], fvp_task1)
    compute_vflossandgrad_task1 = U.function([ob, ret_task1], U.flatgrad(vferr_task1, vf_var_list_task1))

    compute_losses_task2 = U.function([ob, ac, atarg_task2], losses_task2)
    compute_lossandgrad_task2 = U.function([ob, ac, atarg_task2], losses_task2 + [U.flatgrad(optimgain_task2, var_list_task2)])
    compute_fvp_task2 = U.function([flat_tangent_task2, ob, ac, atarg_task2], fvp_task2)
    compute_vflossandgrad_task2 = U.function([ob, ret_task2], U.flatgrad(vferr_task2, vf_var_list_task2))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(colorize("done in %.3f seconds" % (time.time() - tstart), color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    th_init_task1 = get_flat_task1()
    MPI.COMM_WORLD.Bcast(th_init_task1, root=0)
    set_from_flat_task1(th_init_task1)
    # d_adam.sync()
    vfadam_task1.sync()

    th_init_task2 = get_flat_task2()
    MPI.COMM_WORLD.Bcast(th_init_task2, root=0)
    set_from_flat_task2(th_init_task2)
    # d_adam.sync()
    vfadam_task2.sync()
    if rank == 0:
        print("Init param sum", th_init_task1.sum(), flush=True)
        print("Init param sum", th_init_task2.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator_composed(pi_task1, pi_task2, env, boundary_condition, timesteps_per_batch, stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards
    true_rewbuffer = deque(maxlen=40)

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    g_loss_stats = stats(loss_names)
    # d_loss_stats = stats(reward_giver.loss_name)
    ep_stats = stats(["True_rewards", "Rewards", "Episode_length"])

    fname = os.path.join(ckpt_dir, task_name)
    weight_file = tf.train.latest_checkpoint(ckpt_dir)

    print("fname: {} weight_file: {}".format(fname, weight_file))
    if weight_file is not None:
        U.load_state(weight_file)#, var_list=pi.get_variables())
        tf.logging.info('%s loaded' % weight_file)
    else:
        print("from scratch")
        tf.logging.info('Training from the scratch (no pre-trained weight_filets)..')

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break

        # Save model
        if rank == 0 and iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            fname = os.path.join(ckpt_dir, task_name)
            os.makedirs(os.path.dirname(fname), exist_ok=True)
            saver = tf.train.Saver()
            saver.save(tf.get_default_session(), fname)

            print("============= SAVE ===============")

        logger.log("********** Iteration %i ************" % iters_so_far)

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p
        # ------------------ Update G ------------------
        logger.log("Optimizing Policy...")

        # First, we optimize each policy. and then next step we find optimized boundary for given policy.
        for _ in range(policy_step):
            with timed("sampling"):
                seg = seg_gen.__next__()
            add_vtarg_and_adv(seg, gamma, lam)
            # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
            ob_task1, ac_task1, atarg_task1, tdlamret_task1 = seg["ob_task1"], seg["ac_task1"], seg["adv_task1"], seg["tdlamret_task1"]
            ob_task2, ac_task2, atarg_task2, tdlamret_task2 = seg["ob_task2"], seg["ac_task2"], seg["adv_task2"], seg["tdlamret_task2"]
            vpredbefore_task1 = seg["vpred_task1"]  # predicted value function before udpate
            vpredbefore_task2 = seg["vpred_task2"]  # predicted value function before udpate
            atarg_task1 = (atarg_task1 - atarg_task1.mean()) / atarg_task1.std()  # standardized advantage function estimate
            atarg_task2 = (atarg_task2 - atarg_task2.mean()) / atarg_task2.std()  # standardized advantage function estimate

            if hasattr(pi_task1, "ob_rms_task1"): pi_task1.ob_rms.update(ob_task1)  # update running mean/std for policy
            if hasattr(pi_task2, "ob_rms_task2"): pi_task2.ob_rms.update(ob_task2)  # update running mean/std for policy

            args_task1 = seg["ob_task1"], seg["ac_task1"], atarg_task1
            fvpargs_task1 = [arr[::5] for arr in args_task1]

            args_task2 = seg["ob_task2"], seg["ac_task2"], atarg_task2
            fvpargs_task2 = [arr[::5] for arr in args_task2]

            assign_old_eq_new_task1()  # set old parameter values to new parameter values
            assign_old_eq_new_task2()  # set old parameter values to new parameter values
            with timed("computegrad"):
                *lossbefore, g = compute_lossandgrad(*args)
            lossbefore = allmean(np.array(lossbefore))
            g = allmean(g)
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")
            else:
                with timed("cg"):
                    stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=rank == 0)
                assert np.isfinite(stepdir).all()
                shs = .5*stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / max_kl)
                # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args)))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f" % (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > max_kl * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum()))  # list of tuples
                    assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:])
            with timed("vf"):
                for _ in range(vf_iters):
                    for (mbob, mbret) in dataset.iterbatches((seg["ob"], seg["tdlamret"]),
                                                             include_final_partial_batch=False, batch_size=128):
                        if hasattr(pi, "ob_rms"):
                            pi.ob_rms.update(mbob)  # update running mean/std for policy
                        g = allmean(compute_vflossandgrad(mbob, mbret))
                        vfadam.update(g, vf_stepsize)

        g_losses = meanlosses
        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)
        logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))
        # ------------------ Update D ------------------
        logger.log("Optimizing Discriminator...")
        logger.log(fmt_row(13, reward_giver.loss_name))
        ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob))
        batch_size = len(ob) // d_step
        d_losses = []  # list of tuples, each of which gives the loss for a minibatch
        for ob_batch, ac_batch in dataset.iterbatches((ob, ac),
                                                      include_final_partial_batch=False,
                                                      batch_size=batch_size):
            ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob_batch))
            # update running mean/std for reward_giver
            if hasattr(reward_giver, "obs_rms"): reward_giver.obs_rms.update(np.concatenate((ob_batch, ob_expert), 0))
            *newlosses, g = reward_giver.lossandgrad(ob_batch, ac_batch, ob_expert, ac_expert)
            d_adam.update(allmean(g), d_stepsize)
            d_losses.append(newlosses)
        logger.log(fmt_row(13, np.mean(d_losses, axis=0)))

        lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews, true_rets = map(flatten_lists, zip(*listoflrpairs))
        true_rewbuffer.extend(true_rets)
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpTrueRewMean", np.mean(true_rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank == 0:
            logger.dump_tabular()
Exemplo n.º 17
0
def render_evaluate(env, policy_func, *,
        timesteps_per_batch, # what to train on
        max_kl, cg_iters,
        gamma, lam, # advantage estimation
        entcoeff=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters =3,
        max_timesteps=0, max_episodes=0, max_iters=0,  # time constraint
        callback=None
        ):
    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)    
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", ob_space, ac_space)
    oldpi = policy_func("oldpi", ob_space, ac_space)
    atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.compute_kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = U.mean(kloldnew)
    meanent = U.mean(ent)
    entbonus = entcoeff * meanent

    vferr = U.mean(tf.square(pi.vpred - ret))

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # advantage * pnew / pold
    surrgain = U.mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
    vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start+sz], shape))
        start += sz
    gvp = tf.add_n([U.sum(g*tangent) for (g, tangent) in zipsame(klgrads, tangents)]) #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv)
        for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables())])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(colorize("done in %.3f seconds"%(time.time() - tstart), color='magenta'))
        else:
            yield
    
    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    # set up saver
    sess = tf.get_default_session()
    saver = tf.train.Saver()
    
    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    print("loading pretrained model")
    saver.restore(sess, callback.model_dir)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi, env, timesteps_per_batch, stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards

    assert sum([max_iters>0, max_timesteps>0, max_episodes>0])==1

    import gym
    env = gym.make('Ant-v1')
    if True:
        obsall = []
        for _ in range(50):
            obs = []
            done = False
            ob = env.reset()
            #env.render()
            stochastic = 1
            obs.append(env.unwrapped.get_body_com('torso')[:2].copy())
            while not done:
                ac, vpred = pi.act(stochastic, ob)
                ob, rew, done, _ = env.step(ac)
                #env.render()
                obs.append(env.unwrapped.get_body_com('torso')[:2].copy())
            obsall.append(obs)

        if rank==0:
            logger.dump_tabular()

            if callback is not None:
                callback(locals(), globals())
    """
Exemplo n.º 18
0
def learn(env,
          policy_func,
          reward_giver,
          expert_dataset,
          rank,
          pretrained,
          pretrained_weight,
          *,
          g_step,
          d_step,
          entcoeff,
          ckpt_dir,
          timesteps_per_batch,
          task_name,
          gamma,
          lam,
          max_kl,
          cg_iters,
          cg_damping=1e-2,
          vf_stepsize=3e-4,
          d_stepsize=3e-4,
          vf_iters=3,
          max_timesteps=0,
          max_episodes=0,
          max_iters=0,
          rnd_iter=200,
          callback=None,
          dyn_norm=False,
          mmd=False):

    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", ob_space, ac_space)
    oldpi = policy_func("oldpi", ob_space, ac_space)
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = entcoeff * meanent

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    var_list = [
        v for v in all_var_list
        if v.name.startswith("pi/pol") or v.name.startswith("pi/logstd")
    ]
    vf_var_list = [v for v in all_var_list if v.name.startswith("pi/vff")]
    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  # pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = pi.vlossandgrad

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    vfadam.sync()
    if rank == 0:
        print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     reward_giver,
                                     timesteps_per_batch,
                                     stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards
    true_rewbuffer = deque(maxlen=40)

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    ep_stats = stats(["True_rewards", "Rewards", "Episode_length"])
    # if provide pretrained weight
    if pretrained_weight is not None:
        U.load_variables(pretrained_weight, variables=pi.get_variables())
    else:
        if not dyn_norm:
            pi.ob_rms.update(expert_dataset[0])

    if not mmd:
        reward_giver.train(*expert_dataset, iter=rnd_iter)
        #inspect the reward learned
        # for batch in iterbatches(expert_dataset, batch_size=32):
        #     print(reward_giver.get_reward(*batch))

    best = -2000
    save_ind = 0
    max_save = 3
    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break

        logger.log("********** Iteration %i ************" % iters_so_far)

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        # ------------------ Update G ------------------
        # logger.log("Optimizing Policy...")
        for _ in range(g_step):
            seg = seg_gen.__next__()

            #mmd reward
            if mmd:
                reward_giver.set_b2(seg["ob"], seg["ac"])
                seg["rew"] = reward_giver.get_reward(seg["ob"], seg["ac"])

            #report stats and save policy if any good
            lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"]
                       )  # local values
            listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
            lens, rews, true_rets = map(flatten_lists, zip(*listoflrpairs))
            true_rewbuffer.extend(true_rets)
            lenbuffer.extend(lens)
            rewbuffer.extend(rews)

            true_rew_avg = np.mean(true_rewbuffer)
            logger.record_tabular("EpLenMean", np.mean(lenbuffer))
            logger.record_tabular("EpRewMean", np.mean(rewbuffer))
            logger.record_tabular("EpTrueRewMean", true_rew_avg)
            logger.record_tabular("EpThisIter", len(lens))
            episodes_so_far += len(lens)
            timesteps_so_far += sum(lens)
            iters_so_far += 1

            logger.record_tabular("EpisodesSoFar", episodes_so_far)
            logger.record_tabular("TimestepsSoFar", timesteps_so_far)
            logger.record_tabular("TimeElapsed", time.time() - tstart)
            logger.record_tabular("Best so far", best)

            # Save model
            if ckpt_dir is not None and true_rew_avg >= best:
                best = true_rew_avg
                fname = os.path.join(ckpt_dir, task_name)
                os.makedirs(os.path.dirname(fname), exist_ok=True)
                pi.save_policy(fname + "_" + str(save_ind))
                save_ind = (save_ind + 1) % max_save

            #compute gradient towards next policy
            add_vtarg_and_adv(seg, gamma, lam)
            ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
                "tdlamret"]
            vpredbefore = seg[
                "vpred"]  # predicted value function before udpate
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate

            if hasattr(pi, "ob_rms") and dyn_norm:
                pi.ob_rms.update(ob)  # update running mean/std for policy

            args = seg["ob"], seg["ac"], atarg
            fvpargs = [arr[::5] for arr in args]

            assign_old_eq_new(
            )  # set old parameter values to new parameter values
            *lossbefore, g = compute_lossandgrad(*args)
            lossbefore = allmean(np.array(lossbefore))
            g = allmean(g)
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")
            else:
                stepdir = cg(fisher_vector_product,
                             g,
                             cg_iters=cg_iters,
                             verbose=False)
                assert np.isfinite(stepdir).all()
                shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / max_kl)
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(
                        np.array(compute_losses(*args)))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f" %
                               (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > max_kl * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather(
                        (thnew.sum(),
                         vfadam.getflat().sum()))  # list of tuples
                    assert all(
                        np.allclose(ps, paramsums[0]) for ps in paramsums[1:])
            if pi.use_popart:
                pi.update_popart(tdlamret)
            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches(
                    (seg["ob"], seg["tdlamret"]),
                        include_final_partial_batch=False,
                        batch_size=128):
                    if hasattr(pi, "ob_rms") and dyn_norm:
                        pi.ob_rms.update(
                            mbob)  # update running mean/std for policy
                    vfadam.update(allmean(compute_vflossandgrad(mbob, mbret)),
                                  vf_stepsize)

        g_losses = meanlosses
        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)
        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))
        if rank == 0:
            logger.dump_tabular()
Exemplo n.º 19
0
def learn(env_name, make_env, seed, make_policy, *,
          max_iters,
          horizon,
          drho,
          delta,
          gamma,
          multiple_init=None,
          sampler=None,
          feature_fun=None,
          iw_norm='none',
          bound_type='max-ess',
          max_offline_iters=10,
          save_weights=False,
          render_after=None,
          grid_size_1d=None,
          mu_min=None,
          mu_max=None,
          truncated_mise=True,
          delta_t=None,
          k=2,
          filename=None,
          find_optimal_arm=False,
          plot_bound=False,
          plot_ess_profile=False,
          trainable_std=False,
          rescale_ep_return=False):
    """
    Learns a policy from scratch
        make_env: environment maker
        make_policy: policy maker
        horizon: max episode length
        delta: probability of failure
        gamma: discount factor
        max_iters: total number of learning iteration
    """

    # Print options
    np.set_printoptions(precision=3)
    losses_with_name = []

    # Build the environment
    env = make_env()
    ob_space = env.observation_space
    ac_space = env.action_space

    env.seed(seed)

    # Build the higher level target and behavioral policies
    pi = make_policy('pi', ob_space, ac_space)
    oldpi = make_policy('oldpi', ob_space, ac_space)
    logger.record_tabular('NumTrainableParams', int(pi._n_higher_params))

    # Get all pi's learnable parameters
    all_var_list = pi.get_trainable_variables()
    var_list = \
        [v for v in all_var_list if v.name.split('/')[1].startswith('higher')]
    shapes = [U.intprod(var.get_shape().as_list()) for var in var_list]
    d = sum(shapes)
    # Get all oldpi's learnable parameters
    all_var_list_old = oldpi.get_trainable_variables()
    var_list_old = \
        [v for v in all_var_list_old
         if v.name.split('/')[1].startswith('higher')]
    # Get hyperpolicy's logstd
    higher_logstd_list = [pi.get_higher_logstd()]

    # My Placeholders
    actor_params_ = tf.placeholder(shape=[max_iters, pi._n_actor_weights],
                                   name='actor_params', dtype=tf.float32)
    last_actor_param_ = tf.placeholder(shape=(pi._n_actor_weights),
                                       name='last_actor_params',
                                       dtype=tf.float32)
    den_mise_log_ = tf.placeholder(shape=[max_iters], dtype=tf.float32,
                                   name='den_mise')
    renyi_bound_ = tf.placeholder(dtype=tf.float32, name='renyi_bound')
    ret_ = tf.placeholder(dtype=tf.float32, shape=(max_iters), name='ret')
    disc_ret_ = tf.placeholder(dtype=tf.float32, shape=(max_iters),
                               name='disc_ret')
    n_ = tf.placeholder(dtype=tf.float32, name='iter_number')
    n_int = tf.cast(n_, dtype=tf.int32)
    mask_iters_ = tf.placeholder(dtype=tf.float32, shape=(max_iters),
                                 name='mask_iters')
    # grad_ = tf.placeholder(dtype=tf,.float32,
    #                            shape=(d, 1), name='grad')

    # Multiple importance weights (with balance heuristic)
    target_log_pdf = tf.reduce_sum(
        pi.pd.independent_logps(actor_params_), axis=1)
    behavioral_log_pdf = tf.reduce_sum(
        oldpi.pd.independent_logps(actor_params_), axis=1)
    behavioral_log_pdf_last_sample = tf.reduce_sum(
        oldpi.pd.independent_logps(last_actor_param_))
    log_ratio = target_log_pdf - den_mise_log_
    miw = tf.exp(log_ratio) * mask_iters_

    den_mise_log_mean = tf.reduce_sum(den_mise_log_) / n_
    den_mise_log_last = den_mise_log_[n_int-1]
    losses_with_name.extend([(den_mise_log_mean, 'DenMISEMeanLog'),
                             (den_mise_log_[0], 'DenMISELogFirst'),
                             (den_mise_log_last, 'DenMISELogLast'),
                             (miw[0], 'IWFirstEpisode'),
                             (miw[n_int-1], 'IWLastEpisode'),
                             (tf.reduce_sum(miw)/n_, 'IWMean'),
                             (tf.reduce_max(miw), 'IWMax'),
                             (tf.reduce_min(miw), 'IWMin')])

    # Return
    ep_return = disc_ret_
    return_mean = tf.reduce_sum(ep_return) / n_
    return_last = ep_return[n_int - 1]
    return_max = tf.reduce_max(ep_return[:n_int])
    return_min = tf.reduce_min(ep_return[:n_int])
    return_abs_max = tf.reduce_max(tf.abs(ep_return[:n_int]))
    regret = n_ * 5 - tf.reduce_sum(ep_return)
    regret_over_t = 5 - return_mean

    losses_with_name.extend([(return_mean, 'ReturnMean'),
                             (return_max, 'ReturnMax'),
                             (return_min, 'ReturnMin'),
                             (return_last, 'ReturnLastEpisode'),
                             (return_abs_max, 'ReturnAbsMax'),
                             (regret, 'Regret'),
                             (regret_over_t, 'Regret/t')])

    # Regret
    # Exponentiated Renyi divergence between the target and one behavioral
    renyi_component = pi.pd.renyi(oldpi.pd)
    renyi_component = tf.cond(tf.is_nan(renyi_component),
                              lambda: tf.constant(np.inf),
                              lambda: renyi_component)
    renyi_component = tf.cond(renyi_component < 0.,
                              lambda: tf.constant(np.inf),
                              lambda: renyi_component)
    renyi_component = tf.exp(renyi_component)

    if truncated_mise:
        # Bound to d2(target || mixture of behaviorals)/n
        mn = tf.sqrt((n_**2 * renyi_bound_) / tf.log(1 / delta))
        mn_broadcasted = \
            tf.ones(shape=miw.get_shape().as_list(), dtype=np.float32) * mn
        min = tf.where(tf.less(miw, mn_broadcasted), miw, mn_broadcasted)
        mise = tf.reduce_sum(min * ep_return * mask_iters_)/n_
    else:
        # MISE
        mise = tf.reduce_sum(miw * ep_return * mask_iters_)/n_
        losses_with_name.append((mise, 'MISE'))

    # Bounds
    if delta_t == 'continuous':
        tau = tf.ceil(n_**(1 / k))
        delta_cst = delta
        delta = 6 * delta / ((np.pi * n_)**2 * (1 + tau**d))
    elif delta_t == 'discrete':
        delta_cst = delta
        delta = 3 * delta / ((np.pi * n_)**2 * grid_size_1d)
    elif delta_t is None:
        grid_size_1d = 100  # ToDo correggiiiiiiiiiiiiiiii
        delta_cst = delta
        delta = tf.constant(delta)
    else:
        raise NotImplementedError
    losses_with_name.append((delta, 'Delta'))

    if bound_type == 'J':
        bound = mise
    elif bound_type == 'max-renyi':
        if truncated_mise:
            const = return_abs_max * (np.sqrt(2) + 1 / 3) \
                * tf.sqrt(tf.log(1 / delta))
            exploration_bonus = const * tf.sqrt(renyi_bound_)
            bound = mise + exploration_bonus
        else:
            const = return_abs_max * tf.sqrt(1 / delta - 1)
            exploration_bonus = const * tf.sqrt(renyi_bound_)
            bound = mise + exploration_bonus
    else:
        raise NotImplementedError
    losses_with_name.append((mise, 'BoundMISE'))
    losses_with_name.append((exploration_bonus, 'BoundBonus'))
    losses_with_name.append((bound, 'Bound'))

    # ESS estimation by d2
    ess_d2 = n_ / renyi_bound_
    # ESS estimation by miw norms
    eps = 1e-18  # for eps<1e-18 miw_2=0 if weights are zero
    miw_ess = (tf.exp(log_ratio) + eps) * mask_iters_
    miw_1 = tf.linalg.norm(miw_ess, ord=1)
    miw_2 = tf.linalg.norm(miw_ess, ord=2)
    ess_miw = miw_1**2 / miw_2**2

    # Infos
    losses, loss_names = map(list, zip(*losses_with_name))

    # TF functions
    set_parameters = U.SetFromFlat(var_list)
    get_parameters = U.GetFlat(var_list)
    set_parameters_old = U.SetFromFlat(var_list_old)
    # set_higher_logstd = U.SetFromFlat(higher_logstd_list)
    # set_higher_logstd(np.log([0.15, 0.2]))

    compute_behav = U.function(
        [actor_params_], behavioral_log_pdf)
    compute_behav_last_sample = U.function(
        [last_actor_param_], behavioral_log_pdf_last_sample)
    compute_renyi = U.function(
        [], renyi_component)
    compute_bound = U.function(
        [actor_params_, disc_ret_, ret_, n_,
         mask_iters_, den_mise_log_, renyi_bound_], bound)
    compute_grad = U.function(
        [actor_params_, disc_ret_, ret_, n_,
         mask_iters_, den_mise_log_, renyi_bound_],
        U.flatgrad(bound, var_list))
    compute_return_mean = U.function(
        [actor_params_, disc_ret_, ret_, n_,
         mask_iters_], return_mean)
    compute_losses = U.function(
        [actor_params_, disc_ret_, ret_, n_,
         mask_iters_, den_mise_log_, renyi_bound_], losses)
    compute_roba = U.function(
        [actor_params_, disc_ret_, ret_, n_,
         mask_iters_, den_mise_log_, renyi_bound_],
        [mise, exploration_bonus, ess_d2, ess_miw])

    # Tf initialization
    U.initialize()

    # Store behaviorals' params and their trajectories
    old_rhos_list = []
    all_eps = {}
    all_eps['actor_params'] = np.zeros(shape=[max_iters, pi._n_actor_weights])
    all_eps['disc_ret'] = np.zeros(max_iters)
    all_eps['ret'] = np.zeros(max_iters)
    mask_iters = np.zeros(max_iters)
    # Set learning loop variables
    den_mise = np.zeros(mask_iters.shape).astype(np.float32)
    if delta_t == 'continuous':
        renyi_components_sum = None
    else:
        renyi_components_sum = np.zeros(grid_size_1d**d)
    new_grid = True
    grid_size_1d_old = 0
    iters_so_far = 0
    lens = []
    tstart = time.time()
    # Sample actor's params before entering the learning loop
    rho = get_parameters()
    theta = pi.resample()
    all_eps['actor_params'][iters_so_far, :] = theta
    # Establish grid dimension if needed
    grid_dimension = ob_space.shape[0]
    # Learning loop ###########################################################
    while True:
        iters_so_far += 1
        mask_iters[:iters_so_far] = 1

        # Render one episode
        if render_after is not None and iters_so_far % render_after == 0:
            if hasattr(env, 'render'):
                render(env, pi, horizon)

        # Exit loop in the end
        if iters_so_far - 1 >= max_iters:
            print('Finished...')
            break

        # Learning iteration
        logger.log('********** Iteration %i ************' % iters_so_far)

        # Generate one trajectory
        with timed('sampling'):
            # Sample a trajectory with the newly parametrized actor
            ret, disc_ret, ep_len = eval_trajectory(
                env, pi, gamma, horizon, feature_fun, rescale_ep_return)
            all_eps['ret'][iters_so_far-1] = ret
            all_eps['disc_ret'][iters_so_far-1] = disc_ret
            lens.append(ep_len)

        # Store the parameters of the behavioral hyperpolicy
        old_rhos_list.append(rho)

        with timed('summaries before'):
            logger.record_tabular("Iteration", iters_so_far)
            logger.record_tabular("NumTrajectories", iters_so_far)
            logger.record_tabular("TimestepsSoFar", np.sum(lens))
            logger.record_tabular('AvgEpLen', np.mean(lens))
            logger.record_tabular('MinEpLen', np.min(lens))
            logger.record_tabular("TimeElapsed", time.time() - tstart)

        # Save policy parameters to disk
        if save_weights:
            logger.record_tabular('Weights', str(get_parameters()))
            import pickle
            file = open('checkpoint.pkl', 'wb')
            pickle.dump(rho, file)

        # Tensor evaluations

        def evaluate_behav():
            return compute_behav(all_eps['actor_params'])

        def evaluate_behav_last_sample():
            args_behav_last = [all_eps['actor_params'][iters_so_far - 1]]
            return compute_behav_last_sample(*args_behav_last)

        def evaluate_renyi_component():
            return compute_renyi()

        args = all_eps['actor_params'], all_eps['disc_ret'], \
            all_eps['ret'], iters_so_far, mask_iters

        def evaluate_bound(den_mise_log, renyi_bound):
            args_bound = args + (den_mise_log, renyi_bound, )
            return compute_bound(*args_bound)

        def evaluate_grad(den_mise_log, renyi_bound):
            args_grad = args + (den_mise_log, renyi_bound, )
            return compute_grad(*args_grad)

        def evaluate_roba(den_mise_log, renyi_bound):
            args_roba = args + (den_mise_log, renyi_bound, )
            return compute_roba(*args_roba)

        if bound_type == 'J':
            evaluate_renyi = None
        elif bound_type == 'max-renyi':
            evaluate_renyi = evaluate_renyi_component
        else:
            raise NotImplementedError

        with timed("Optimization"):
            if find_optimal_arm:
                pass
            elif multiple_init:
                bound = 0
                improvement = 0
                check = False
                for i in range(multiple_init):
                    rho_init = [np.arctanh(np.random.uniform(
                        pi.min_mean, pi.max_mean))]
                    rho_i, improvement_i, den_mise_log_i, bound_i = \
                        optimize_offline(evaluate_roba, pi,
                                         rho_init, drho,
                                         old_rhos_list,
                                         iters_so_far,
                                         mask_iters, set_parameters,
                                         set_parameters_old,
                                         evaluate_behav, evaluate_renyi,
                                         evaluate_bound,
                                         evaluate_grad,
                                         max_offline_ite=max_offline_iters)
                    if bound_i > bound:
                        check = True
                        rho = rho_i
                        improvement = improvement_i
                        den_mise_log = den_mise_log_i
                if not check:
                    den_mise_log = den_mise_log_i
            else:
                if delta_t == 'continuous':
                    grid_size_1d = int(np.ceil(iters_so_far**(1 / k)))
                    if grid_size_1d > grid_size_1d_old:
                        new_grid = True
                        renyi_components_sum = np.zeros(grid_size_1d**d)
                        grid_size_1d_old = grid_size_1d
                rho, improvement, den_mise_log, den_mise, \
                    renyi_components_sum, renyi_bound = \
                    best_of_grid(pi, grid_size_1d, mu_min, mu_max,
                                 grid_dimension, trainable_std,
                                 rho, old_rhos_list,
                                 iters_so_far, mask_iters,
                                 set_parameters, set_parameters_old,
                                 delta_cst, renyi_components_sum,
                                 evaluate_behav, den_mise,
                                 evaluate_behav_last_sample,
                                 evaluate_bound, evaluate_renyi, evaluate_roba,
                                 filename, plot_bound,
                                 plot_ess_profile, delta_t, new_grid)
                new_grid = False
            set_parameters(rho)

        with timed('summaries after'):
            # Sample actor's parameters from hyperpolicy and assign to actor
            if iters_so_far < max_iters:
                theta = pi.resample()
                all_eps['actor_params'][iters_so_far, :] = theta

            if env.spec is not None:
                if env.spec.id == 'LQG1D-v0':
                    mu1_actor = pi.eval_actor_mean([[1]])[0][0]
                    mu1_higher = pi.eval_higher_mean()[0]
                    sigma = pi.eval_higher_std()[0]
                    logger.record_tabular("LQGmu1_actor", mu1_actor)
                    logger.record_tabular("LQGmu1_higher", mu1_higher)
                    logger.record_tabular("LQGsigma_higher", sigma)
                elif env.spec.id == 'MountainCarContinuous-v0':
                    ac1 = pi.eval_actor_mean([[1, 1]])[0][0]
                    mu1_higher = pi.eval_higher_mean()
                    sigma = pi.eval_higher_std()
                    logger.record_tabular("ActionIn1", ac1)
                    logger.record_tabular("MountainCar_mu0_higher", mu1_higher[0])
                    logger.record_tabular("MountainCar_mu1_higher", mu1_higher[1])
                    logger.record_tabular("MountainCar_std0_higher", sigma[0])
                    logger.record_tabular("MountainCar_std1_higher", sigma[1])
            elif env.id is not None:
                if env.id == 'inverted_pendulum':
                    ac1 = pi.eval_actor_mean([[1, 1, 1, 1]])[0][0]
                    mu1_higher = pi.eval_higher_mean()
                    sigma = pi.eval_higher_std()
                    logger.record_tabular("ActionIn1", ac1)
                    logger.record_tabular("InvPendulum_mu0_higher", mu1_higher[0])
                    logger.record_tabular("InvPendulum_mu1_higher", mu1_higher[1])
                    logger.record_tabular("InvPendulum_mu2_higher", mu1_higher[2])
                    logger.record_tabular("InvPendulum_mu3_higher", mu1_higher[3])
                    logger.record_tabular("InvPendulum_std0_higher", sigma[0])
                    logger.record_tabular("InvPendulum_std1_higher", sigma[1])
                    logger.record_tabular("InvPendulum_std2_higher", sigma[2])
                    logger.record_tabular("InvPendulum_std3_higher", sigma[3])
            if find_optimal_arm:
                ret_mean = compute_return_mean(*args)
                logger.record_tabular('ReturnMean', ret_mean)
            else:
                args_losses = args + (den_mise_log, renyi_bound, )
                meanlosses = np.array(compute_losses(*args_losses))
                for (lossname, lossval) in zip(loss_names, meanlosses):
                    logger.record_tabular(lossname, lossval)

        # Print all info in a table
        logger.dump_tabular()

    # Close environment in the end
    env.close()
Exemplo n.º 20
0
def run_hoof_no_lamgam(
        network,
        env,
        total_timesteps,
        timesteps_per_batch,  # what to train on
        kl_range,
        gamma_range,
        lam_range,  # advantage estimation
        num_kl,
        num_gamma_lam,
        cg_iters=10,
        seed=None,
        ent_coef=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters=3,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None,
        load_path=None,
        **network_kwargs):
    '''
    learn a policy function with TRPO algorithm
    Parameters:
    ----------
    network                 neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types)
                            or function that takes input placeholder and returns tuple (output, None) for feedforward nets
                            or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets
    env                     environment (one of the gym environments or wrapped via baselines.common.vec_env.VecEnv-type class
    timesteps_per_batch     timesteps per gradient estimation batch
    max_kl                  max KL divergence between old policy and new policy ( KL(pi_old || pi) )
    ent_coef                coefficient of policy entropy term in the optimization objective
    cg_iters                number of iterations of conjugate gradient algorithm
    cg_damping              conjugate gradient damping
    vf_stepsize             learning rate for adam optimizer used to optimie value function loss
    vf_iters                number of iterations of value function optimization iterations per each policy optimization step
    total_timesteps           max number of timesteps
    max_episodes            max number of episodes
    max_iters               maximum number of policy optimization iterations
    callback                function to be called with (locals(), globals()) each policy optimization step
    load_path               str, path to load the model from (default: None, i.e. no model is loaded)
    **network_kwargs        keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network
    Returns:
    -------
    learnt model
    '''

    MPI = None
    nworkers = 1
    rank = 0

    cpus_per_worker = 1
    U.get_session(
        config=tf.ConfigProto(allow_soft_placement=True,
                              inter_op_parallelism_threads=cpus_per_worker,
                              intra_op_parallelism_threads=cpus_per_worker))

    policy = build_policy(env, network, value_network='copy', **network_kwargs)
    set_global_seeds(seed)

    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space

    # +2 for gamma, lambda
    ob = tf.placeholder(shape=(None, env.observation_space.shape[0] + 2),
                        dtype=env.observation_space.dtype,
                        name='Ob')
    with tf.variable_scope("pi"):
        pi = policy(observ_placeholder=ob)
    with tf.variable_scope("oldpi"):
        oldpi = policy(observ_placeholder=ob)

    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = ent_coef * meanent

    vferr = tf.reduce_mean(tf.square(pi.vf - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = get_trainable_variables("pi")
    var_list = get_pi_trainable_variables("pi")
    vf_var_list = get_vf_trainable_variables("pi")

    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(get_variables("oldpi"), get_variables("pi"))
        ])

    compute_ratio = U.function(
        [ob, ac, atarg], ratio)  # IS ratio - used for computing IS weights

    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        if MPI is not None:
            out = np.empty_like(x)
            MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
            out /= nworkers
        else:
            out = np.copy(x)

        return out

    U.initialize()
    if load_path is not None:
        pi.load(load_path)

    th_init = get_flat()
    if MPI is not None:
        MPI.COMM_WORLD.Bcast(th_init, root=0)

    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator_with_gl(pi,
                                             env,
                                             timesteps_per_batch,
                                             stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    if sum([max_iters > 0, total_timesteps > 0, max_episodes > 0]) == 0:
        # noththing to be done
        return pi

    assert sum([max_iters>0, total_timesteps>0, max_episodes>0]) < 2, \
        'out of max_iters, total_timesteps, and max_episodes only one should be specified'

    kl_range = np.atleast_1d(kl_range)
    gamma_range = np.atleast_1d(gamma_range)
    lam_range = np.atleast_1d(lam_range)

    while True:
        if callback: callback(locals(), globals())
        if total_timesteps and timesteps_so_far >= total_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************" % iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()

        thbefore = get_flat()

        rand_gamma = gamma_range[0] + (
            gamma_range[-1] - gamma_range[0]) * np.random.rand(num_gamma_lam)
        rand_lam = lam_range[0] + (
            lam_range[-1] - lam_range[0]) * np.random.rand(num_gamma_lam)
        rand_kl = kl_range[0] + (kl_range[-1] -
                                 kl_range[0]) * np.random.rand(num_kl)

        opt_polval = -10**8
        est_polval = np.zeros((num_gamma_lam, num_kl))
        ob_lam_gam = []
        tdlamret = []
        vpred = []

        for gl in range(num_gamma_lam):
            oblg, vpredbefore, atarg, tdlr = add_vtarg_and_adv_without_gl(
                pi, seg, rand_gamma[gl], rand_lam[gl])

            ob_lam_gam += [oblg]
            tdlamret += [tdlr]
            vpred += [vpredbefore]
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate

            pol_ob = np.concatenate(
                (seg['ob'], np.zeros(seg['ob'].shape[:-1] + (2, ))), axis=-1)
            args = pol_ob, seg["ac"], atarg
            fvpargs = [arr[::5] for arr in args]

            def fisher_vector_product(p):
                return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

            assign_old_eq_new(
            )  # set old parameter values to new parameter values
            with timed("computegrad"):
                *lossbefore, g = compute_lossandgrad(*args)
            lossbefore = allmean(np.array(lossbefore))
            g = allmean(g)
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")
            else:
                with timed("cg"):
                    stepdir = cg(fisher_vector_product,
                                 g,
                                 cg_iters=cg_iters,
                                 verbose=False)
                assert np.isfinite(stepdir).all()
                shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                surrbefore = lossbefore[0]

                for m, kl in enumerate(rand_kl):
                    lm = np.sqrt(shs / kl)
                    fullstep = stepdir / lm
                    thnew = thbefore + fullstep
                    set_from_flat(thnew)

                    # compute the IS estimates
                    lik_ratio = compute_ratio(*args)
                    est_polval[gl, m] = wis_estimate(seg, lik_ratio)

                    # update best policy found so far
                    if est_polval[gl, m] > opt_polval:
                        opt_polval = est_polval[gl, m]
                        opt_th = thnew
                        opt_kl = kl
                        opt_gamma = rand_gamma[gl]
                        opt_lam = rand_lam[gl]
                        opt_vpredbefore = vpredbefore
                        opt_tdlr = tdlr
                        meanlosses = surr, kl, *_ = allmean(
                            np.array(compute_losses(*args)))
                        improve = surr - surrbefore
                        expectedimprove = g.dot(fullstep)
                    set_from_flat(thbefore)
        logger.log("Expected: %.3f Actual: %.3f" % (expectedimprove, improve))
        set_from_flat(opt_th)

        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)

        ob_lam_gam = np.concatenate(ob_lam_gam, axis=0)
        tdlamret = np.concatenate(tdlamret, axis=0)
        vpred = np.concatenate(vpred, axis=0)
        with timed("vf"):
            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches(
                    (ob_lam_gam, tdlamret),
                        include_final_partial_batch=False,
                        batch_size=num_gamma_lam * 64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)

        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpred, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        if MPI is not None:
            listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        else:
            listoflrpairs = [lrlocal]

        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        logger.record_tabular("Opt_KL", opt_kl)
        logger.record_tabular("gamma", opt_gamma)
        logger.record_tabular("lam", opt_lam)

        if rank == 0:
            logger.dump_tabular()

    return pi
Exemplo n.º 21
0
def learn(
        *,
        network,
        env,
        seed=None,
        beta,
        total_timesteps,
        sil_update,
        sil_loss,
        timesteps_per_batch=2048,  # what to train on
        epsilon=0.01,
        cg_iters=10,
        gamma=0.99,
        lam=0.98,  # advantage estimation
        entcoeff=0.0,
        lr=3e-4,
        cg_damping=0.1,
        vf_stepsize=1e-3,
        vf_iters=5,
        sil_value=0.01,
        sil_alpha=0.6,
        sil_beta=0.1,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None,
        save_interval=0,
        load_path=None,
        model_fn=None,
        update_fn=None,
        init_fn=None,
        mpi_rank_weight=1,
        comm=None,
        vf_coef=0.5,
        max_grad_norm=0.5,
        log_interval=1,
        nminibatches=4,
        noptepochs=4,
        cliprange=0.2,
        TRPO=False,
        **network_kwargs):

    set_global_seeds(seed)
    if isinstance(lr, float): lr = constfn(lr)
    else: assert callable(lr)
    if isinstance(cliprange, float): cliprange = constfn(cliprange)
    else: assert callable(cliprange)
    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()

    policy = build_policy(env,
                          network,
                          value_network='copy',
                          copos=True,
                          **network_kwargs)
    nenvs = env.num_envs
    np.set_printoptions(precision=3)

    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    nbatch = nenvs * timesteps_per_batch
    nbatch_train = nbatch // nminibatches
    is_mpi_root = (MPI is None or MPI.COMM_WORLD.Get_rank() == 0)
    if model_fn is None:
        model_fn = Model
    discrete_ac_space = isinstance(ac_space, gym.spaces.Discrete)

    ob = observation_placeholder(ob_space)
    with tf.variable_scope("pi", reuse=tf.AUTO_REUSE):
        pi = policy(observ_placeholder=ob)
        #sil_model=policy(None, None, sess=get_session)
        make_model = lambda: Model(
            policy=policy,
            ob_space=ob_space,
            ac_space=ac_space,
            nbatch_act=nenvs,
            nbatch_train=nbatch_train,
            nsteps=timesteps_per_batch,
            ent_coef=entcoeff,
            vf_coef=vf_coef,
            max_grad_norm=max_grad_norm,
            sil_update=sil_update,
            sil_value=sil_value,
            sil_alpha=sil_alpha,
            sil_beta=sil_beta,
            sil_loss=sil_loss,
            #                                    fn_reward=env.process_reward,
            fn_reward=None,
            #                                    fn_obs=env.process_obs,
            fn_obs=None,
            ppo=False,
            prev_pi='pi',
            silm=pi)
        model = make_model()
        if load_path is not None:
            model.load(load_path)
    with tf.variable_scope("oldpi", reuse=tf.AUTO_REUSE):
        oldpi = policy(observ_placeholder=ob)
        make_old_model = lambda: Model(
            policy=policy,
            ob_space=ob_space,
            ac_space=ac_space,
            nbatch_act=nenvs,
            nbatch_train=nbatch_train,
            nsteps=timesteps_per_batch,
            ent_coef=entcoeff,
            vf_coef=vf_coef,
            max_grad_norm=max_grad_norm,
            sil_update=sil_update,
            sil_value=sil_value,
            sil_alpha=sil_alpha,
            sil_beta=sil_beta,
            sil_loss=sil_loss,
            #                                    fn_reward=env.process_reward,
            fn_reward=None,
            #                                    fn_obs=env.process_obs,
            fn_obs=None,
            ppo=False,
            prev_pi='oldpi',
            silm=oldpi)
        old_model = make_old_model()

    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    old_entropy = oldpi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = entcoeff * meanent

    vferr = tf.reduce_mean(tf.square(pi.vf - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "Entropy"]

    dist = meankl

    #all_var_list = pi.get_trainable_variables()
    #all_var_list = [v for v in all_var_list if v.name.split("/")[0].startswith("pi")]
    #var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
    #vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]

    all_var_list = get_trainable_variables("pi")
    var_list = get_pi_trainable_variables("pi")
    vf_var_list = get_vf_trainable_variables("pi")

    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    #????gvp and fvp???
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(get_variables("oldpi"), get_variables("pi"))
        ])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    if load_path is not None:
        pi.load(load_path)
    th_init = get_flat()
    if MPI is not None:
        MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Initialize eta, omega optimizer
    if discrete_ac_space:
        init_eta = 1
        init_omega = 0.5
        eta_omega_optimizer = EtaOmegaOptimizerDiscrete(
            beta, epsilon, init_eta, init_omega)
    else:
        init_eta = 0.5
        init_omega = 2.0
        #????eta_omega_optimizer details?????
        eta_omega_optimizer = EtaOmegaOptimizer(beta, epsilon, init_eta,
                                                init_omega)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(env,
                                     timesteps_per_batch,
                                     model,
                                     stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    assert sum([max_iters > 0, total_timesteps > 0, max_episodes > 0]) == 1

    while True:
        if callback: callback(locals(), globals())
        if total_timesteps and timesteps_so_far >= total_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************" % iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
            "tdlamret"]
        vpredbefore = seg["vpred"]  # predicted value function before udpate
        model = seg["model"]
        atarg = (atarg - atarg.mean()
                 ) / atarg.std()  # standardized advantage function estimate
        #print(ob[:20])
        #print(ac[:20])

        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "rms"):
            pi.rms.update(ob)  # update running mean/std for policy

        args = seg["ob"], seg["ac"], atarg
        fvpargs = [arr[::5] for arr in args]

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        assign_old_eq_new()  # set old parameter values to new parameter values
        with timed("computegrad"):
            *lossbefore, g = compute_lossandgrad(*args)
        lossbefore = allmean(np.array(lossbefore))
        g = allmean(g)
        if np.allclose(g, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with timed("cg"):
                stepdir = cg(fisher_vector_product,
                             g,
                             cg_iters=cg_iters,
                             verbose=rank == 0)
            assert np.isfinite(stepdir).all()

            if TRPO:
                #
                # TRPO specific code.
                # Find correct step size using line search
                #
                shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / epsilon)
                # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(
                        np.array(compute_losses(*args)))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f" %
                               (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > epsilon * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)
            else:
                #
                # COPOS specific implementation.
                #
                copos_update_dir = stepdir

                # Split direction into log-linear 'w_theta' and non-linear 'w_beta' parts
                w_theta, w_beta = pi.split_w(copos_update_dir)

                tmp_ob = np.zeros(
                    (1, ) + env.observation_space.shape
                )  # We assume that entropy does not depend on the NN

                # Optimize eta and omega
                if discrete_ac_space:
                    entropy = lossbefore[4]
                    #entropy = - 1/timesteps_per_batch * np.sum(np.sum(pi.get_action_prob(ob) * pi.get_log_action_prob(ob), axis=1))
                    eta, omega = eta_omega_optimizer.optimize(
                        pi.compute_F_w(ob, copos_update_dir),
                        pi.get_log_action_prob(ob), timesteps_per_batch,
                        entropy)
                else:
                    Waa, Wsa = pi.w2W(w_theta)
                    wa = pi.get_wa(ob, w_beta)

                    varphis = pi.get_varphis(ob)

                    #old_ent = old_entropy.eval({oldpi.ob: tmp_ob})[0]
                    old_ent = lossbefore[4]
                    eta, omega = eta_omega_optimizer.optimize(
                        w_theta, Waa, Wsa, wa, varphis, pi.get_kt(),
                        pi.get_prec_matrix(), pi.is_new_policy_valid, old_ent)
                logger.log("Initial eta: " + str(eta) + " and omega: " +
                           str(omega))

                current_theta_beta = get_flat()
                prev_theta, prev_beta = pi.all_to_theta_beta(
                    current_theta_beta)

                if discrete_ac_space:
                    # Do a line search for both theta and beta parameters by adjusting only eta
                    eta = eta_search(w_theta, w_beta, eta, omega, allmean,
                                     compute_losses, get_flat, set_from_flat,
                                     pi, epsilon, args, discrete_ac_space)
                    logger.log("Updated eta, eta: " + str(eta))
                    set_from_flat(pi.theta_beta_to_all(prev_theta, prev_beta))
                    # Find proper omega for new eta. Use old policy parameters first.
                    eta, omega = eta_omega_optimizer.optimize(
                        pi.compute_F_w(ob, copos_update_dir),
                        pi.get_log_action_prob(ob), timesteps_per_batch,
                        entropy, eta)
                    logger.log("Updated omega, eta: " + str(eta) +
                               " and omega: " + str(omega))

                    # do line search for ratio for non-linear "beta" parameter values
                    #ratio = beta_ratio_line_search(w_theta, w_beta, eta, omega, allmean, compute_losses, get_flat, set_from_flat, pi,
                    #                     epsilon, beta, args)
                    # set ratio to 1 if we do not use beta ratio line search
                    ratio = 1
                    #print("ratio from line search: " + str(ratio))
                    cur_theta = (eta * prev_theta +
                                 w_theta.reshape(-1, )) / (eta + omega)
                    cur_beta = prev_beta + ratio * w_beta.reshape(-1, ) / eta
                else:
                    for i in range(2):
                        # Do a line search for both theta and beta parameters by adjusting only eta
                        eta = eta_search(w_theta, w_beta, eta, omega, allmean,
                                         compute_losses, get_flat,
                                         set_from_flat, pi, epsilon, args)
                        logger.log("Updated eta, eta: " + str(eta) +
                                   " and omega: " + str(omega))

                        # Find proper omega for new eta. Use old policy parameters first.
                        set_from_flat(
                            pi.theta_beta_to_all(prev_theta, prev_beta))
                        eta, omega = \
                            eta_omega_optimizer.optimize(w_theta, Waa, Wsa, wa, varphis, pi.get_kt(),
                                                         pi.get_prec_matrix(), pi.is_new_policy_valid, old_ent, eta)
                        logger.log("Updated omega, eta: " + str(eta) +
                                   " and omega: " + str(omega))

                    # Use final policy
                    logger.log("Final eta: " + str(eta) + " and omega: " +
                               str(omega))
                    cur_theta = (eta * prev_theta +
                                 w_theta.reshape(-1, )) / (eta + omega)
                    cur_beta = prev_beta + w_beta.reshape(-1, ) / eta

                set_from_flat(pi.theta_beta_to_all(cur_theta, cur_beta))

                meanlosses = surr, kl, *_ = allmean(
                    np.array(compute_losses(*args)))
##copos specific over
            if nworkers > 1 and iters_so_far % 20 == 0:
                paramsums = MPI.COMM_WORLD.allgather(
                    (thnew.sum(), vfadam.getflat().sum()))  # list of tuples
                assert all(
                    np.allclose(ps, paramsums[0]) for ps in paramsums[1:])
#cg over
        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)


#policy update over
        with timed("vf"):
            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches(
                    (seg["ob"], seg["tdlamret"]),
                        include_final_partial_batch=False,
                        batch_size=64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)
        with timed('SIL'):
            lrnow = lr(1.0 - timesteps_so_far / total_timesteps)
            l_loss, sil_adv, sil_samples, sil_nlogp = model.sil_train(lrnow)

        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        print("Reward max: " + str(max(rewbuffer)))
        print("Reward min: " + str(min(rewbuffer)))

        logger.record_tabular(
            "EpLenMean",
            np.mean(lenbuffer) if np.sum(lenbuffer) != 0.0 else 0.0)
        logger.record_tabular(
            "EpRewMean",
            np.mean(rewbuffer) if np.sum(rewbuffer) != 0.0 else 0.0)
        logger.record_tabular(
            "AverageReturn",
            np.mean(rewbuffer) if np.sum(rewbuffer) != 0.0 else 0.0)
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        if sil_update > 0:
            logger.record_tabular("SilSamples", sil_samples)

        if rank == 0:
            logger.dump_tabular()
Exemplo n.º 22
0
def learn(env,
          policy,
          vf,
          gamma,
          lam,
          timesteps_per_batch,
          num_timesteps,
          animate=False,
          callback=None,
          desired_kl=0.002,
          lr=0.03,
          momentum=0.9):
    ob_dim, ac_dim = policy.ob_dim, policy.ac_dim
    dbpi = GaussianMlpPolicy(ob_dim, ac_dim, 'dbp')
    oldpi = GaussianMlpPolicy(ob_dim, ac_dim, 'oe')
    dboldpi = GaussianMlpPolicy(ob_dim, ac_dim, 'doi')
    # with tf.variable_scope('dbp'):
    # with tf.variable_scope('oe'):
    # with tf.variable_scope('doi'):

    pi = policy

    do_std = U.function([], [pi.std_1a, pi.logstd_1a])

    kloldnew = oldpi.pd.kl(pi.pd)
    dbkloldnew = dboldpi.pd.kl(dbpi.pd)
    dist = meankl = tf.reduce_mean(kloldnew)
    dbkl = tf.reduce_mean(dbkloldnew)
    obfilter = ZFilter(env.observation_space.shape)

    max_pathlength = env.spec.timestep_limit
    stepsize = tf.Variable(initial_value=np.float32(np.array(lr)),
                           name='stepsize')
    inputs, loss, loss_sampled = policy.update_info

    var_list = [v for v in tf.global_variables() if "pi" in v.name]
    db_var_list = [v for v in tf.global_variables() if "dbp" in v.name]
    old_var_list = [v for v in tf.global_variables() if "oe" in v.name]
    db_old_var_list = [v for v in tf.global_variables() if "doi" in v.name]
    print(len(var_list), len(db_var_list), len(old_var_list),
          len(db_old_var_list))
    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv, newv) in zipsame(old_var_list, var_list)
        ])
    assign_db = U.function(
        [], [],
        updates=[
            tf.assign(db, o) for (db, o) in zipsame(db_var_list, var_list)
        ] + [
            tf.assign(dbold, dbnew)
            for (dbold, dbnew) in zipsame(db_old_var_list, old_var_list)
        ])

    assign_old_eq_newr = U.function(
        [], [],
        updates=[
            tf.assign(newv, oldv)
            for (oldv, newv) in zipsame(old_var_list, var_list)
        ])
    # assign_dbr = U.function([], [], updates=
    # [tf.assign(o, db) for (db, o) in zipsame(db_var_list, var_list)] +
    # [tf.assign(dbnew, dbold) for (dbold, dbnew) in zipsame(db_old_var_list, old_var_list)])

    klgrads = tf.gradients(dist, var_list)
    dbklgrads = tf.gradients(dbkl, db_var_list)
    p_grads = [tf.ones_like(v) for v in dbklgrads]

    get_flat = U.GetFlat(var_list)
    get_old_flat = U.GetFlat(old_var_list)
    set_from_flat = U.SetFromFlat(var_list)

    flat_tangent2 = tf.placeholder(dtype=tf.float32,
                                   shape=[None],
                                   name="flat_tan2")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents2 = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents2.append(tf.reshape(flat_tangent2[start:start + sz], shape))
        start += sz
    gvp2 = tf.add_n([
        tf.reduce_sum(g * tangent2)
        for (g, tangent2) in zipsame(dbklgrads, tangents2)
    ])
    gvp2_grads = tf.gradients(gvp2, db_var_list)

    neg_term = tf.add_n([
        tf.reduce_sum(g * tangent2)
        for (g, tangent2) in zipsame(gvp2_grads, tangents2)
    ]) / 2.
    ng1 = tf.gradients(neg_term, db_var_list)
    ng2 = tf.gradients(neg_term, db_old_var_list)

    neg_term_grads = [
        a + b for (a, b) in zip(tf.gradients(neg_term, db_var_list),
                                tf.gradients(neg_term, db_old_var_list))
    ]
    neg_term = neg_term_grads
    # neg_term = tf.concat(axis=0, values=[tf.reshape(v, [U.numel(v)]) for v in neg_term_grads])

    pos_term = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(gvp2_grads, p_grads)
    ])
    pos_term_grads = [
        a + b for (a, b) in zip(tf.gradients(pos_term, db_var_list),
                                tf.gradients(pos_term, db_old_var_list))
    ]
    pos_term_sum = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(pos_term_grads, tangents2)
    ])
    pos_term_grads = tf.gradients(pos_term_sum, p_grads)
    pos_term = pos_term_grads
    # pos_term = tf.concat(axis=0, values=[tf.reshape(v, [U.numel(v)]) for v in pos_term_grads])
    geo_term = [(p - n) * 0.5 for p, n in zip(pos_term, neg_term)]

    optim = kfac.KfacOptimizer(learning_rate=stepsize, cold_lr=stepsize*(1-0.9), momentum=momentum, kfac_update=2,\
                                epsilon=1e-2, stats_decay=0.99, async=1, cold_iter=1,
                                weight_decay_dict=policy.wd_dict, max_grad_norm=None)
    pi_var_list = []
    for var in tf.trainable_variables():
        if "pi" in var.name:
            pi_var_list.append(var)

    grads = optim.compute_gradients(loss, var_list=pi_var_list)
    update_op, q_runner = optim.minimize(loss,
                                         loss_sampled,
                                         var_list=pi_var_list)
    geo_term = [g1 + g2[0] for g1, g2 in zip(geo_term, grads)]
    geo_grads = list(zip(geo_term, var_list))
    update_geo_op, q_runner_geo = optim.apply_gradients(geo_grads)
    do_update = U.function(inputs, update_op)
    inputs_tangent = list(inputs) + [flat_tangent2]
    do_update_geo = U.function(inputs_tangent, update_geo_op)
    do_get_geo_term = U.function(inputs_tangent, [ng1, ng2])
    U.initialize()

    # start queue runners
    enqueue_threads = []
    coord = tf.train.Coordinator()
    for qr in [q_runner, vf.q_runner, q_runner_geo]:
        assert (qr != None)
        enqueue_threads.extend(
            qr.create_threads(tf.get_default_session(),
                              coord=coord,
                              start=True))

    i = 0
    timesteps_so_far = 0
    while True:
        if timesteps_so_far > num_timesteps:
            break
        logger.log("********** Iteration %i ************" % i)

        # Collect paths until we have enough timesteps
        timesteps_this_batch = 0
        paths = []
        while True:
            path = rollout(env,
                           policy,
                           max_pathlength,
                           animate=(len(paths) == 0 and (i % 10 == 0)
                                    and animate),
                           obfilter=obfilter)
            paths.append(path)
            n = pathlength(path)
            timesteps_this_batch += n
            timesteps_so_far += n
            if timesteps_this_batch > timesteps_per_batch:
                break

        # Estimate advantage function
        vtargs = []
        advs = []
        for path in paths:
            rew_t = path["reward"]
            return_t = common.discount(rew_t, gamma)
            vtargs.append(return_t)
            vpred_t = vf.predict(path)
            vpred_t = np.append(vpred_t,
                                0.0 if path["terminated"] else vpred_t[-1])
            delta_t = rew_t + gamma * vpred_t[1:] - vpred_t[:-1]
            adv_t = common.discount(delta_t, gamma * lam)
            advs.append(adv_t)
        # Update value function
        vf.fit(paths, vtargs)

        # Build arrays for policy update
        ob_no = np.concatenate([path["observation"] for path in paths])
        action_na = np.concatenate([path["action"] for path in paths])
        oldac_dist = np.concatenate([path["action_dist"] for path in paths])
        adv_n = np.concatenate(advs)
        standardized_adv_n = (adv_n - adv_n.mean()) / (adv_n.std() + 1e-8)

        assign_old_eq_new()  # set old parameter values to new parameter values
        assign_db()

        # Policy update
        do_update(ob_no, action_na, standardized_adv_n)
        # ft2 = get_flat() - get_old_flat()

        # assign_old_eq_newr() # assign back
        # gnp = do_get_geo_term(ob_no, action_na, standardized_adv_n, ft2)

        # def check_nan(bs):
        #     return [~np.isnan(b).all() for b in bs]

        # print(gnp[0])
        # print('.....asdfasdfadslfkadsjfaksdfalsdkfjaldskf')
        # print(gnp[1])
        # do_update_geo(ob_no, action_na, standardized_adv_n, ft2)

        min_stepsize = np.float32(1e-8)
        max_stepsize = np.float32(1e0)
        # Adjust stepsize
        kl = policy.compute_kl(ob_no, oldac_dist)
        # if kl > desired_kl * 2:
        #     logger.log("kl too high")
        #     tf.assign(stepsize, tf.maximum(min_stepsize, stepsize / 1.5)).eval()
        # elif kl < desired_kl / 2:
        #     logger.log("kl too low")
        #     tf.assign(stepsize, tf.minimum(max_stepsize, stepsize * 1.5)).eval()
        # else:
        #     logger.log("kl just right!")

        logger.record_tabular(
            "EpRewMean", np.mean([path["reward"].sum() for path in paths]))
        logger.record_tabular(
            "EpRewSEM",
            np.std([
                path["reward"].sum() / np.sqrt(len(paths)) for path in paths
            ]))
        logger.record_tabular("EpLenMean",
                              np.mean([pathlength(path) for path in paths]))
        logger.record_tabular("KL", kl)
        print(do_std())
        if callback:
            callback()
        logger.dump_tabular()
        i += 1

    coord.request_stop()
    coord.join(enqueue_threads)
def learn(
        *,
        network,
        env,
        eval_env,
        make_eval_env,
        env_id,
        total_timesteps,
        timesteps_per_batch,
        sil_update,
        sil_loss,  # what to train on
        max_kl=0.001,
        cg_iters=10,
        gamma=0.99,
        lam=1.0,  # advantage estimation
        seed=None,
        ent_coef=0.0,
        lr=3e-4,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters=5,
        sil_value=0.01,
        sil_alpha=0.6,
        sil_beta=0.1,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None,
        save_interval=0,
        load_path=None,
        # MBL
        # For train mbl
        mbl_train_freq=5,

        # For eval
        num_eval_episodes=5,
        eval_freq=5,
        vis_eval=False,
        eval_targs=('mbmf', ),
        #eval_targs=('mf',),
        quant=2,

        # For mbl.step
        #num_samples=(1500,),
        num_samples=(1, ),
        horizon=(2, ),
        #horizon=(2,1),
        #num_elites=(10,),
        num_elites=(1, ),
        mbl_lamb=(1.0, ),
        mbl_gamma=0.99,
        #mbl_sh=1, # Number of step for stochastic sampling
        mbl_sh=10000,
        #vf_lookahead=-1,
        #use_max_vf=False,
        reset_per_step=(0, ),

        # For get_model
        num_fc=2,
        num_fwd_hidden=500,
        use_layer_norm=False,

        # For MBL
        num_warm_start=int(1e4),
        init_epochs=10,
        update_epochs=5,
        batch_size=512,
        update_with_validation=False,
        use_mean_elites=1,
        use_ent_adjust=0,
        adj_std_scale=0.5,

        # For data loading
        validation_set_path=None,

        # For data collect
        collect_val_data=False,

        # For traj collect
        traj_collect='mf',

        # For profile
        measure_time=True,
        eval_val_err=False,
        measure_rew=True,
        model_fn=None,
        update_fn=None,
        init_fn=None,
        mpi_rank_weight=1,
        comm=None,
        vf_coef=0.5,
        max_grad_norm=0.5,
        log_interval=1,
        nminibatches=4,
        noptepochs=4,
        cliprange=0.2,
        **network_kwargs):
    '''
    learn a policy function with TRPO algorithm

    Parameters:
    ----------

    network                 neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types)
                            or function that takes input placeholder and returns tuple (output, None) for feedforward nets
                            or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets

    env                     environment (one of the gym environments or wrapped via baselines.common.vec_env.VecEnv-type class

    timesteps_per_batch     timesteps per gradient estimation batch

    max_kl                  max KL divergence between old policy and new policy ( KL(pi_old || pi) )

    ent_coef                coefficient of policy entropy term in the optimization objective

    cg_iters                number of iterations of conjugate gradient algorithm

    cg_damping              conjugate gradient damping

    vf_stepsize             learning rate for adam optimizer used to optimie value function loss

    vf_iters                number of iterations of value function optimization iterations per each policy optimization step

    total_timesteps           max number of timesteps

    max_episodes            max number of episodes

    max_iters               maximum number of policy optimization iterations

    callback                function to be called with (locals(), globals()) each policy optimization step

    load_path               str, path to load the model from (default: None, i.e. no model is loaded)

    **network_kwargs        keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network

    Returns:
    -------

    learnt model

    '''
    if not isinstance(num_samples, tuple): num_samples = (num_samples, )
    if not isinstance(horizon, tuple): horizon = (horizon, )
    if not isinstance(num_elites, tuple): num_elites = (num_elites, )
    if not isinstance(mbl_lamb, tuple): mbl_lamb = (mbl_lamb, )
    if not isinstance(reset_per_step, tuple):
        reset_per_step = (reset_per_step, )
    if validation_set_path is None:
        if collect_val_data:
            validation_set_path = os.path.join(logger.get_dir(), 'val.pkl')
        else:
            validation_set_path = os.path.join('dataset',
                                               '{}-val.pkl'.format(env_id))
    if eval_val_err:
        eval_val_err_path = os.path.join('dataset',
                                         '{}-combine-val.pkl'.format(env_id))
    logger.log(locals())
    logger.log('MBL_SH', mbl_sh)
    logger.log('Traj_collect', traj_collect)

    if MPI is not None:
        nworkers = MPI.COMM_WORLD.Get_size()
        rank = MPI.COMM_WORLD.Get_rank()
    else:
        nworkers = 1
        rank = 0
    cpus_per_worker = 1
    U.get_session(
        config=tf.ConfigProto(allow_soft_placement=True,
                              inter_op_parallelism_threads=cpus_per_worker,
                              intra_op_parallelism_threads=cpus_per_worker))

    set_global_seeds(seed)
    if isinstance(lr, float): lr = constfn(lr)
    else: assert callable(lr)
    if isinstance(cliprange, float): cliprange = constfn(cliprange)
    else: assert callable(cliprange)

    policy = build_policy(env, network, value_network='copy', **network_kwargs)
    nenvs = env.num_envs
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    nbatch = nenvs * timesteps_per_batch
    nbatch_train = nbatch // nminibatches
    is_mpi_root = (MPI is None or MPI.COMM_WORLD.Get_rank() == 0)

    ob = observation_placeholder(ob_space)
    with tf.variable_scope("pi"):
        pi = policy(observ_placeholder=ob)
        make_model = lambda: Model(
            policy=policy,
            ob_space=ob_space,
            ac_space=ac_space,
            nbatch_act=nenvs,
            nbatch_train=nbatch_train,
            nsteps=timesteps_per_batch,
            ent_coef=ent_coef,
            vf_coef=vf_coef,
            max_grad_norm=max_grad_norm,
            sil_update=sil_update,
            sil_value=sil_value,
            sil_alpha=sil_alpha,
            sil_beta=sil_beta,
            sil_loss=sil_loss,
            #                                    fn_reward=env.process_reward,
            fn_reward=None,
            #                                    fn_obs=env.process_obs,
            fn_obs=None,
            ppo=False,
            prev_pi='pi',
            silm=pi)
        model = make_model()
    with tf.variable_scope("oldpi"):
        oldpi = policy(observ_placeholder=ob)
        make_old_model = lambda: Model(
            policy=policy,
            ob_space=ob_space,
            ac_space=ac_space,
            nbatch_act=nenvs,
            nbatch_train=nbatch_train,
            nsteps=timesteps_per_batch,
            ent_coef=ent_coef,
            vf_coef=vf_coef,
            max_grad_norm=max_grad_norm,
            sil_update=sil_update,
            sil_value=sil_value,
            sil_alpha=sil_alpha,
            sil_beta=sil_beta,
            sil_loss=sil_loss,
            #                                    fn_reward=env.process_reward,
            fn_reward=None,
            #                                    fn_obs=env.process_obs,
            fn_obs=None,
            ppo=False,
            prev_pi='oldpi',
            silm=oldpi)
        old_model = make_old_model()

    # MBL
    # ---------------------------------------
    #viz = Visdom(env=env_id)
    win = None
    eval_targs = list(eval_targs)
    logger.log(eval_targs)

    make_model_f = get_make_mlp_model(num_fc=num_fc,
                                      num_fwd_hidden=num_fwd_hidden,
                                      layer_norm=use_layer_norm)
    mbl = MBL(env=eval_env,
              env_id=env_id,
              make_model=make_model_f,
              num_warm_start=num_warm_start,
              init_epochs=init_epochs,
              update_epochs=update_epochs,
              batch_size=batch_size,
              **network_kwargs)

    val_dataset = {'ob': None, 'ac': None, 'ob_next': None}
    if update_with_validation:
        logger.log('Update with validation')
        val_dataset = load_val_data(validation_set_path)
    if eval_val_err:
        logger.log('Log val error')
        eval_val_dataset = load_val_data(eval_val_err_path)
    if collect_val_data:
        logger.log('Collect validation data')
        val_dataset_collect = []

    def _mf_pi(ob, t=None):
        stochastic = True
        ac, vpred, _, _ = pi.step(ob, stochastic=stochastic)
        return ac, vpred

    def _mf_det_pi(ob, t=None):
        #ac, vpred, _, _ = pi.step(ob, stochastic=False)
        ac, vpred = pi._evaluate([pi.pd.mode(), pi.vf], ob)
        return ac, vpred

    def _mf_ent_pi(ob, t=None):
        mean, std, vpred = pi._evaluate([pi.pd.mode(), pi.pd.std, pi.vf], ob)
        ac = np.random.normal(mean, std * adj_std_scale, size=mean.shape)
        return ac, vpred
################### use_ent_adjust======> adj_std_scale????????pi action sample

    def _mbmf_inner_pi(ob, t=0):
        if use_ent_adjust:
            return _mf_ent_pi(ob)
        else:
            #return _mf_pi(ob)
            if t < mbl_sh: return _mf_pi(ob)
            else: return _mf_det_pi(ob)

    # ---------------------------------------

    # Run multiple configuration once
    all_eval_descs = []

    def make_mbmf_pi(n, h, e, l):
        def _mbmf_pi(ob):
            ac, rew = mbl.step(ob=ob,
                               pi=_mbmf_inner_pi,
                               horizon=h,
                               num_samples=n,
                               num_elites=e,
                               gamma=mbl_gamma,
                               lamb=l,
                               use_mean_elites=use_mean_elites)
            return ac[None], rew

        return Policy(step=_mbmf_pi, reset=None)

    for n in num_samples:
        for h in horizon:
            for l in mbl_lamb:
                for e in num_elites:
                    if 'mbmf' in eval_targs:
                        all_eval_descs.append(('MeanRew', 'MBL_TRPO_SIL',
                                               make_mbmf_pi(n, h, e, l)))
                    #if 'mbmf' in eval_targs: all_eval_descs.append(('MeanRew-n-{}-h-{}-e-{}-l-{}-sh-{}-me-{}'.format(n, h, e, l, mbl_sh, use_mean_elites), 'MBL_TRPO-n-{}-h-{}-e-{}-l-{}-sh-{}-me-{}'.format(n, h, e, l, mbl_sh, use_mean_elites), make_mbmf_pi(n, h, e, l)))
    if 'mf' in eval_targs:
        all_eval_descs.append(
            ('MeanRew', 'TRPO_SIL', Policy(step=_mf_pi, reset=None)))

    logger.log('List of evaluation targets')
    for it in all_eval_descs:
        logger.log(it[0])

    pool = Pool(mp.cpu_count())
    warm_start_done = False
    # ----------------------------------------

    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = ent_coef * meanent

    vferr = tf.reduce_mean(tf.square(pi.vf - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = get_trainable_variables("pi")
    # var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
    # vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
    var_list = get_pi_trainable_variables("pi")
    vf_var_list = get_vf_trainable_variables("pi")

    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(get_variables("oldpi"), get_variables("pi"))
        ])

    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    if load_path is not None:
        pi.load(load_path)

    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)
    # Prepare for rollouts
    # ----------------------------------------
    if traj_collect == 'mf':
        seg_gen = traj_segment_generator(env,
                                         timesteps_per_batch,
                                         model,
                                         stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    if sum([max_iters > 0, total_timesteps > 0, max_episodes > 0]) == 0:
        # noththing to be done
        return pi

    assert sum([max_iters>0, total_timesteps>0, max_episodes>0]) < 2, \
        'out of max_iters, total_timesteps, and max_episodes only one should be specified'

    while True:
        if callback: callback(locals(), globals())
        if total_timesteps and timesteps_so_far >= total_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************" % iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
            if traj_collect == 'mf-random' or traj_collect == 'mf-mb':
                seg_mbl = seg_gen_mbl.__next__()
            else:
                seg_mbl = seg
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
            "tdlamret"]

        # Val data collection
        if collect_val_data:
            for ob_, ac_, ob_next_ in zip(ob[:-1, 0, ...], ac[:-1, ...],
                                          ob[1:, 0, ...]):
                val_dataset_collect.append(
                    (copy.copy(ob_), copy.copy(ac_), copy.copy(ob_next_)))
        # -----------------------------
        # MBL update
        else:
            ob_mbl, ac_mbl = seg_mbl["ob"], seg_mbl["ac"]

            mbl.add_data_batch(ob_mbl[:-1, 0, ...], ac_mbl[:-1, ...],
                               ob_mbl[1:, 0, ...])
            mbl.update_forward_dynamic(require_update=iters_so_far %
                                       mbl_train_freq == 0,
                                       ob_val=val_dataset['ob'],
                                       ac_val=val_dataset['ac'],
                                       ob_next_val=val_dataset['ob_next'])
        # -----------------------------

        if traj_collect == 'mf':
            #if traj_collect == 'mf' or traj_collect == 'mf-random' or traj_collect == 'mf-mb':
            vpredbefore = seg[
                "vpred"]  # predicted value function before udpate
            model = seg["model"]
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate

            if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
            if hasattr(pi, "rms"):
                pi.rms.update(ob)  # update running mean/std for policy

            args = seg["ob"], seg["ac"], atarg
            fvpargs = [arr[::5] for arr in args]

            def fisher_vector_product(p):
                return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

            assign_old_eq_new(
            )  # set old parameter values to new parameter values
            with timed("computegrad"):
                *lossbefore, g = compute_lossandgrad(*args)
            lossbefore = allmean(np.array(lossbefore))
            g = allmean(g)
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")
            else:
                with timed("cg"):
                    stepdir = cg(fisher_vector_product,
                                 g,
                                 cg_iters=cg_iters,
                                 verbose=rank == 0)
                assert np.isfinite(stepdir).all()
                shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / max_kl)
                # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(
                        np.array(compute_losses(*args)))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f" %
                               (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > max_kl * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather(
                        (thnew.sum(),
                         vfadam.getflat().sum()))  # list of tuples
                    assert all(
                        np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

            for (lossname, lossval) in zip(loss_names, meanlosses):
                logger.record_tabular(lossname, lossval)

            with timed("vf"):

                for _ in range(vf_iters):
                    for (mbob, mbret) in dataset.iterbatches(
                        (seg["ob"], seg["tdlamret"]),
                            include_final_partial_batch=False,
                            batch_size=64):
                        g = allmean(compute_vflossandgrad(mbob, mbret))
                        vfadam.update(g, vf_stepsize)
            with timed("SIL"):
                lrnow = lr(1.0 - timesteps_so_far / total_timesteps)
                l_loss, sil_adv, sil_samples, sil_nlogp = model.sil_train(
                    lrnow)

            logger.record_tabular("ev_tdlam_before",
                                  explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        if MPI is not None:
            listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        else:
            listoflrpairs = [lrlocal]
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        if sil_update > 0:
            logger.record_tabular("SilSamples", sil_samples)

        if rank == 0:
            # MBL evaluation
            if not collect_val_data:
                #set_global_seeds(seed)
                default_sess = tf.get_default_session()

                def multithread_eval_policy(env_, pi_, num_episodes_,
                                            vis_eval_, seed):
                    with default_sess.as_default():
                        if hasattr(env, 'ob_rms') and hasattr(env_, 'ob_rms'):
                            env_.ob_rms = env.ob_rms
                        res = eval_policy(env_, pi_, num_episodes_, vis_eval_,
                                          seed, measure_time, measure_rew)

                        try:
                            env_.close()
                        except:
                            pass
                    return res

                if mbl.is_warm_start_done() and iters_so_far % eval_freq == 0:
                    warm_start_done = mbl.is_warm_start_done()
                    if num_eval_episodes > 0:
                        targs_names = {}
                        with timed('eval'):
                            num_descs = len(all_eval_descs)
                            list_field_names = [e[0] for e in all_eval_descs]
                            list_legend_names = [e[1] for e in all_eval_descs]
                            list_pis = [e[2] for e in all_eval_descs]
                            list_eval_envs = [
                                make_eval_env() for _ in range(num_descs)
                            ]
                            list_seed = [seed for _ in range(num_descs)]
                            list_num_eval_episodes = [
                                num_eval_episodes for _ in range(num_descs)
                            ]
                            print(list_field_names)
                            print(list_legend_names)

                            list_vis_eval = [
                                vis_eval for _ in range(num_descs)
                            ]

                            for i in range(num_descs):
                                field_name, legend_name = list_field_names[
                                    i], list_legend_names[i],

                                res = multithread_eval_policy(
                                    list_eval_envs[i], list_pis[i],
                                    list_num_eval_episodes[i],
                                    list_vis_eval[i], seed)
                                #eval_results = pool.starmap(multithread_eval_policy, zip(list_eval_envs, list_pis, list_num_eval_episodes, list_vis_eval,list_seed))

                                #for field_name, legend_name, res in zip(list_field_names, list_legend_names, eval_results):
                                perf, elapsed_time, eval_rew = res
                                logger.record_tabular(field_name, perf)
                                if measure_time:
                                    logger.record_tabular(
                                        'Time-%s' % (field_name), elapsed_time)
                                if measure_rew:
                                    logger.record_tabular(
                                        'SimRew-%s' % (field_name), eval_rew)
                                targs_names[field_name] = legend_name

                    if eval_val_err:
                        fwd_dynamics_err = mbl.eval_forward_dynamic(
                            obs=eval_val_dataset['ob'],
                            acs=eval_val_dataset['ac'],
                            obs_next=eval_val_dataset['ob_next'])
                        logger.record_tabular('FwdValError', fwd_dynamics_err)

                    logger.dump_tabular()
                    #print(logger.get_dir())
                    #print(targs_names)
                    #if num_eval_episodes > 0:


#                        win = plot(viz, win, logger.get_dir(), targs_names=targs_names, quant=quant, opt='best')
# -----------
#logger.dump_tabular()
        yield pi

    if collect_val_data:
        with open(validation_set_path, 'wb') as f:
            pickle.dump(val_dataset_collect, f)
        logger.log('Save {} validation data'.format(len(val_dataset_collect)))
Exemplo n.º 24
0
    def _build_trpo(self):
        pi = self._policy
        oldpi = self._old_policy
        other_pis = self._pis

        # input placeholders
        ob = pi.ob
        ac = pi.pdtype.sample_placeholder([None], name='action')
        atarg = tf.placeholder(
            dtype=tf.float32, shape=[None],
            name='advantage')  # Target advantage function (if applicable)
        ret = tf.placeholder(dtype=tf.float32, shape=[None],
                             name='return')  # Empirical return

        # policy
        all_var_list = pi.get_trainable_variables()
        pol_var_list = [
            v for v in all_var_list if v.name.split("/")[1].startswith("pol")
        ]
        vf_var_list = [
            v for v in all_var_list if v.name.split("/")[1].startswith("vf")
        ]
        self._vf_adam = MpiAdam(vf_var_list)

        kl_oldnew = oldpi.pd.kl(pi.pd)
        ent = pi.pd.entropy()
        mean_kl = tf.reduce_mean(kl_oldnew)
        mean_ent = tf.reduce_mean(ent)
        pol_entpen = -self._config.ent_coeff * mean_ent

        vf_loss = tf.reduce_mean(tf.square(pi.vpred - ret))

        ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))
        pol_surr = tf.reduce_mean(ratio * atarg)

        # divergence
        other_obs = []  # put id-th data
        for other_pi in other_pis:
            other_obs.extend(other_pi.obs[self.id])
        my_obs_for_other = flatten_lists(pi.obs)  # put i-th data
        other_obs_for_other = []  # put i-th data
        for i, other_pi in enumerate(other_pis):
            other_obs_for_other.extend(other_pi.obs[i])

        pairwise_divergence = [tf.constant(0.)]
        for i, other_pi in enumerate(other_pis):
            if i != self.id:
                pairwise_divergence.append(
                    tf.reduce_mean(pi.pds[self.id].kl(other_pi.pds[self.id])))
                pairwise_divergence.append(
                    tf.reduce_mean(other_pi.pds[i].kl(pi.pds[i])))
        pol_divergence = self._config.divergence_coeff * tf.reduce_mean(
            pairwise_divergence)

        pol_loss = pol_surr + pol_entpen + pol_divergence
        pol_losses = {
            'pol_loss': pol_loss,
            'pol_surr': pol_surr,
            'pol_entpen': pol_entpen,
            'pol_divergence': pol_divergence,
            'kl': mean_kl,
            'entropy': mean_ent
        }
        self.summary_name += ['vf_loss']
        self.summary_name += pol_losses.keys()

        self._get_flat = U.GetFlat(pol_var_list)
        self._set_from_flat = U.SetFromFlat(pol_var_list)
        klgrads = tf.gradients(mean_kl, pol_var_list)
        flat_tangent = tf.placeholder(dtype=tf.float32,
                                      shape=[None],
                                      name="flat_tan")
        shapes = [var.get_shape().as_list() for var in pol_var_list]
        start = 0
        tangents = []
        for shape in shapes:
            sz = U.intprod(shape)
            tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
            start += sz
        gvp = tf.add_n([
            tf.reduce_sum(g * tangent)
            for (g, tangent) in zipsame(klgrads, tangents)
        ])  #pylint: disable=E1111
        fvp = U.flatgrad(gvp, pol_var_list)

        self._update_oldpi = U.function(
            [], [],
            updates=[
                tf.assign(oldv, newv) for (
                    oldv,
                    newv) in zipsame(oldpi.get_variables(), pi.get_variables())
            ])
        obs_pairwise = other_obs + my_obs_for_other + other_obs_for_other + ob
        self._compute_losses = U.function(obs_pairwise + [ac, atarg],
                                          pol_losses)
        pol_losses = dict(pol_losses)
        pol_losses.update({'g': U.flatgrad(pol_loss, pol_var_list)})
        self._compute_lossandgrad = U.function(obs_pairwise + [ac, atarg],
                                               pol_losses)
        self._compute_fvp = U.function([flat_tangent] + obs_pairwise +
                                       [ac, atarg], fvp)
        self._compute_vflossandgrad = U.function(
            ob + [ret], U.flatgrad(vf_loss, vf_var_list))
        self._compute_vfloss = U.function(ob + [ret], vf_loss)

        # initialize and sync
        U.initialize()
        th_init = self._get_flat()
        MPI.COMM_WORLD.Bcast(th_init, root=0)
        self._set_from_flat(th_init)
        self._vf_adam.sync()
        rank = MPI.COMM_WORLD.Get_rank()

        if self._config.debug:
            logger.log(
                "[worker: {} local net: {}] Init pol param sum: {}".format(
                    rank, self.id, th_init.sum()))
            logger.log(
                "[worker: {} local net: {}] Init vf param sum: {}".format(
                    rank, self.id,
                    self._vf_adam.getflat().sum()))