Exemplo n.º 1
0
def learn(
        *,
        network,
        env,
        total_timesteps,
        timesteps_per_batch=1024,  # what to train on
        max_kl=0.001,
        cg_iters=10,
        gamma=0.99,
        lam=1.0,  # advantage estimation
        seed=None,
        ent_coef=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters=3,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None,
        load_path=None,
        save_path='',
        **network_kwargs):
    '''
    learn a policy function with TRPO algorithm

    Parameters:
    ----------

    network                 neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types)
                            or function that takes input placeholder and returns tuple (output, None) for feedforward nets
                            or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets

    env                     environment (one of the gym environments or wrapped via baselines.common.vec_env.VecEnv-type class

    timesteps_per_batch     timesteps per gradient estimation batch

    max_kl                  max KL divergence between old policy and new policy ( KL(pi_old || pi) )

    ent_coef                coefficient of policy entropy term in the optimization objective

    cg_iters                number of iterations of conjugate gradient algorithm

    cg_damping              conjugate gradient damping

    vf_stepsize             learning rate for adam optimizer used to optimie value function loss

    vf_iters                number of iterations of value function optimization iterations per each policy optimization step

    total_timesteps           max number of timesteps

    max_episodes            max number of episodes

    max_iters               maximum number of policy optimization iterations

    callback                function to be called with (locals(), globals()) each policy optimization step

    load_path               str, path to load the model from (default: None, i.e. no model is loaded)

    **network_kwargs        keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network

    Returns:
    -------

    learnt model

    '''

    if MPI is not None:
        nworkers = MPI.COMM_WORLD.Get_size()
        rank = MPI.COMM_WORLD.Get_rank()
    else:
        nworkers = 1
        rank = 0

    cpus_per_worker = 1
    U.get_session(
        config=tf.ConfigProto(allow_soft_placement=True,
                              inter_op_parallelism_threads=cpus_per_worker,
                              intra_op_parallelism_threads=cpus_per_worker))

    policy = build_policy(env, network, value_network='copy', **network_kwargs)
    set_global_seeds(seed)

    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space

    ob = observation_placeholder(ob_space)
    with tf.variable_scope("pi"):
        pi = policy(observ_placeholder=ob)
    with tf.variable_scope("oldpi"):
        oldpi = policy(observ_placeholder=ob)

    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = ent_coef * meanent

    vferr = tf.reduce_mean(tf.square(pi.vf - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = get_trainable_variables("pi")
    # var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
    # vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
    var_list = get_pi_trainable_variables("pi")
    vf_var_list = get_vf_trainable_variables("pi")

    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(get_variables("oldpi"), get_variables("pi"))
        ])

    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        if MPI is not None:
            out = np.empty_like(x)
            MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
            out /= nworkers
        else:
            out = np.copy(x)

        return out

    U.initialize()
    if load_path is not None:
        pi.load(load_path, tf.Session())

    th_init = get_flat()
    if MPI is not None:
        MPI.COMM_WORLD.Bcast(th_init, root=0)

    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     timesteps_per_batch,
                                     stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    if sum([max_iters > 0, total_timesteps > 0, max_episodes > 0]) == 0:
        # noththing to be done
        return pi

    assert sum([max_iters>0, total_timesteps>0, max_episodes>0]) < 2, \
        'out of max_iters, total_timesteps, and max_episodes only one should be specified'

    while True:
        if callback: callback(locals(), globals())
        if total_timesteps and timesteps_so_far >= total_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************" % iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
            "tdlamret"]
        vpredbefore = seg["vpred"]  # predicted value function before udpate
        atarg = (atarg - atarg.mean()
                 ) / atarg.std()  # standardized advantage function estimate

        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"):
            pi.ob_rms.update(ob)  # update running mean/std for policy

        args = seg["ob"], seg["ac"], atarg
        fvpargs = [arr[::5] for arr in args]

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        assign_old_eq_new()  # set old parameter values to new parameter values
        with timed("computegrad"):
            *lossbefore, g = compute_lossandgrad(*args)
        lossbefore = allmean(np.array(lossbefore))
        g = allmean(g)
        if np.allclose(g, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with timed("cg"):
                stepdir = cg(fisher_vector_product,
                             g,
                             cg_iters=cg_iters,
                             verbose=rank == 0)
            assert np.isfinite(stepdir).all()
            shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
            lm = np.sqrt(shs / max_kl)
            # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
            fullstep = stepdir / lm
            expectedimprove = g.dot(fullstep)
            surrbefore = lossbefore[0]
            stepsize = 1.0
            thbefore = get_flat()
            for _ in range(10):
                thnew = thbefore + fullstep * stepsize
                set_from_flat(thnew)
                meanlosses = surr, kl, *_ = allmean(
                    np.array(compute_losses(*args)))
                improve = surr - surrbefore
                logger.log("Expected: %.3f Actual: %.3f" %
                           (expectedimprove, improve))
                if not np.isfinite(meanlosses).all():
                    logger.log("Got non-finite value of losses -- bad!")
                elif kl > max_kl * 1.5:
                    logger.log("violated KL constraint. shrinking step.")
                elif improve < 0:
                    logger.log("surrogate didn't improve. shrinking step.")
                else:
                    logger.log("Stepsize OK!")
                    break
                stepsize *= .5
            else:
                logger.log("couldn't compute a good step")
                set_from_flat(thbefore)
            if nworkers > 1 and iters_so_far % 20 == 0:
                paramsums = MPI.COMM_WORLD.allgather(
                    (thnew.sum(), vfadam.getflat().sum()))  # list of tuples
                assert all(
                    np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)

        with timed("vf"):

            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches(
                    (seg["ob"], seg["tdlamret"]),
                        include_final_partial_batch=False,
                        batch_size=64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)

        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        if MPI is not None:
            listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        else:
            listoflrpairs = [lrlocal]

        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        kvs = logger.getkvs()
        logger.JSONOutputFormat(save_path +
                                '/epoch_results.json').writekvs(kvs)

        if rank == 0:
            logger.dump_tabular()

    return pi
Exemplo n.º 2
0
def learn(env,
          q_func,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = tf.Session()
    sess.__enter__()
    tensorboard_writer = logger.TensorBoardOutputFormat('./tensorboard/single-dqn/')

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    def make_obs_ph(name):
        return ObservationInput(env.observation_space, name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    num_steps = []
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model.ckpt")
        model_saved = False
        if tf.train.latest_checkpoint(td) is not None:
            load_state(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True

        for t in range(max_timesteps):
            env.render(mode='human')
            #time.sleep(0.01)
            #env.render(mode='human')
            #time.sleep(0.01)
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs['update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes, new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                print("Update target")
                update_target()
                # check whether targetDQN

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                #                logger.record_tabular("mean steps", )
                logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                tensorboard_writer.writekvs(logger.getkvs())
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                                   saved_mean_reward, mean_100ep_reward))
                    save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
            load_state(model_file)

    return act
def learn(*,
          policy,
          env,
          nsteps,
          total_timesteps,
          ent_coef,
          lr,
          vf_coef=0.5,
          max_grad_norm=0.5,
          gamma=0.99,
          lam=0.95,
          log_interval=10,
          nminibatches=4,
          noptepochs=4,
          cliprange=0.2,
          save_interval=0):
    if isinstance(lr, float):
        lr = constfn(lr)
    else:
        assert callable(lr)
    if isinstance(cliprange, float):
        cliprange = constfn(cliprange)
    else:
        assert callable(cliprange)
    total_timesteps = int(total_timesteps)
    csv_writer = logger.CSVOutputFormat('{0}.csv'.format(Config.EXPR_NAME))
    tensorboard_writer = logger.TensorBoardOutputFormat('./tensorboard/ppo/')

    nenvs = env.num_envs
    ob_shape = utils.get_shape(env.observation_space)
    ac_space = env.action_space
    nbatch = nenvs * nsteps
    nbatch_train = nbatch // nminibatches

    make_model = lambda scope_name: Model(policy=policy,
                                          ob_shape=ob_shape,
                                          ac_space=ac_space,
                                          nbatch_act=nenvs,
                                          nbatch_train=nbatch_train,
                                          nsteps=nsteps,
                                          ent_coef=ent_coef,
                                          vf_coef=vf_coef,
                                          max_grad_norm=max_grad_norm,
                                          scope_name=scope_name)

    if save_interval and logger.get_dir():
        import cloudpickle
        with open(osp.join(logger.get_dir(), 'make_model.pkl'), 'wb') as fh:
            fh.write(cloudpickle.dumps(make_model))

    model = make_model(Config.PRIMARY_MODEL_SCOPE)
    opponent_model1 = None
    opponent_model2 = None

    baseline_file = None
    # baseline_file = 'dual_snake_3.pkl'

    if Config.NUM_SNAKES > 1:
        opponent_model1 = make_model(Config.OPPONENT_MODEL_SCOPE)
    if Config.NUM_SNAKES > 2:
        opponent_model2 = make_model(Config.OPPONENT_MODEL2_SCOPE)

    if baseline_file != None:
        model.load(baseline_file)

        if opponent_model1 != None:
            opponent_model1.load(baseline_file)

        if opponent_model2 != None:
            opponent_model2.load(baseline_file)

    runner = Runner(env=env,
                    model=model,
                    opponent_model1=opponent_model1,
                    opponent_model2=opponent_model2,
                    nsteps=nsteps,
                    gamma=gamma,
                    lam=lam)

    maxlen = 100
    epinfobuf = deque(maxlen=maxlen)
    tfirststart = time.time()

    next_highscore = 5
    highscore_interval = 1

    opponent_save_interval = Config.OPPONENT_SAVE_INTERVAL
    max_saved_opponents = Config.MAX_SAVED_OPPONENTS
    opponent1_idx = 0
    num_opponents1 = 0

    opponent2_idx = 0
    num_opponents2 = 0

    model_idx = 0

    model.save(utils.get_opponent1_file(opponent1_idx))
    opponent1_idx += 1
    num_opponents1 += 1

    model.save(utils.get_opponent2_file(opponent2_idx))
    opponent2_idx += 1
    num_opponents2 += 1

    nupdates = total_timesteps // nbatch
    for update in range(1, nupdates + 1):
        if opponent_model1 != None:
            selected_opponent1_idx = random.randint(0,
                                                    max(num_opponents1 - 1, 0))
            print('Loading checkpoint ' + str(selected_opponent1_idx) + '...')
            opponent_model1.load(
                utils.get_opponent1_file(selected_opponent1_idx))

        if opponent_model2 != None:
            selected_opponent2_idx = random.randint(0,
                                                    max(num_opponents2 - 1, 0))
            print('Loading checkpoint ' + str(selected_opponent2_idx) + '...')
            opponent_model2.load(
                utils.get_opponent2_file(selected_opponent2_idx))

        assert nbatch % nminibatches == 0
        nbatch_train = nbatch // nminibatches
        tstart = time.time()
        frac = 1.0 - (update - 1.0) / nupdates
        lrnow = lr(frac)
        cliprangenow = cliprange(frac)
        obs, returns, masks, actions, values, neglogpacs, states, epinfos = runner.run(
        )  # pylint: disable=E0632
        epinfobuf.extend(epinfos)
        mblossvals = []

        inds = np.arange(nbatch)
        for _ in range(noptepochs):
            np.random.shuffle(inds)
            for start in range(0, nbatch, nbatch_train):
                end = start + nbatch_train
                mbinds = inds[start:end]
                slices = (arr[mbinds] for arr in (obs, returns, masks, actions,
                                                  values, neglogpacs))
                mblossvals.append(model.train(lrnow, cliprangenow, *slices))

        lossvals = np.mean(mblossvals, axis=0)
        tnow = time.time()
        fps = int(nbatch / (tnow - tstart))

        ep_rew_mean = safemean([epinfo['r'] for epinfo in epinfobuf])

        if update % opponent_save_interval == 0 and opponent_model1 != None:
            print('Saving opponent model1 ' + str(opponent1_idx) + '...')

            model.save(utils.get_opponent1_file(opponent1_idx))

            opponent1_idx += 1
            num_opponents1 = max(opponent1_idx, num_opponents1)
            opponent1_idx = opponent1_idx % max_saved_opponents

        if update % opponent_save_interval == 0 and opponent_model2 != None:
            print('Saving opponent model2 ' + str(opponent2_idx) + '...')
            model.save(utils.get_opponent2_file(opponent2_idx))

            opponent2_idx += 1
            num_opponents2 = max(opponent2_idx, num_opponents2)
            opponent2_idx = opponent2_idx % max_saved_opponents

        if update % log_interval == 0 or update == 1:
            if (Config.NUM_SNAKES == 1):
                pass
                # logger.logkv('next_highscore', next_highscore)  # TODO: Change it to 100 ep mean score
            else:
                logger.logkv('num_opponents', num_opponents1)

            ev = explained_variance(values, returns)
            logger.logkv("serial_timesteps", update * nsteps)
            logger.logkv("nupdates", update)
            logger.logkv("total_timesteps", update * nbatch)
            # logger.logkv("fps", fps)
            logger.logkv("explained_variance", float(ev))
            logger.logkv('eprewmean ' + str(maxlen), ep_rew_mean)
            logger.logkv('eplenmean',
                         safemean([epinfo['l'] for epinfo in epinfobuf]))
            logger.logkv('time_elapsed', tnow - tfirststart)
            # logger.logkv('nenvs nsteps nmb nopte', [nenvs, nsteps, nminibatches, noptepochs])
            logger.logkv('ep_rew_mean', ep_rew_mean)
            for (lossval, lossname) in zip(lossvals, model.loss_names):
                logger.logkv(lossname, lossval)

            kvs = logger.getkvs()
            csv_writer.writekvs(kvs)
            tensorboard_writer.writekvs(kvs)
            logger.dumpkvs()

        if save_interval and (update % save_interval == 0
                              or update == 1) and logger.get_dir():
            model.save('snake_model_num{0}_{1}.pkl'.format(
                Config.NUM_SNAKES, model_idx))
            model_idx += 1

        # Highscores only indicate better performance in single agent setting, free of opponent agent dependencies
        if (ep_rew_mean > next_highscore) and Config.NUM_SNAKES == 1:
            print('saving agent with new highscore ', next_highscore, '...')
            next_highscore += highscore_interval
            model.save('highscore_model.pkl')

    model.save('snake_model_num{0}.pkl'.format(Config.NUM_SNAKES))

    env.close()
Exemplo n.º 4
0
def learn(*,
          network,
          env,
          total_timesteps,
          eval_env=None,
          seed=None,
          nsteps=2048,
          ent_coef=0.0,
          lr=3e-4,
          vf_coef=0.5,
          max_grad_norm=0.5,
          gamma=0.99,
          lam=0.95,
          log_interval=10,
          nminibatches=4,
          noptepochs=4,
          cliprange=0.2,
          save_interval=0,
          load_path=None,
          model_fn=None,
          save_path='',
          model_load_path='',
          skip_layers=[],
          frozen_weights=[],
          transfer_weights=False,
          second_env=None,
          **network_kwargs):
    '''
    Learn policy using PPO algorithm (https://arxiv.org/abs/1707.06347)

    Parameters:
    ----------

    network:                          policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list)
                                      specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns
                                      tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward
                                      neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets.
                                      See common/models.py/lstm for more details on using recurrent nets in policies

    env: baselines.common.vec_env.VecEnv     environment. Needs to be vectorized for parallel environment simulation.
                                      The environments produced by gym.make can be wrapped using baselines.common.vec_env.DummyVecEnv class.


    nsteps: int                       number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where
                                      nenv is number of environment copies simulated in parallel)

    total_timesteps: int              number of timesteps (i.e. number of actions taken in the environment)

    ent_coef: float                   policy entropy coefficient in the optimization objective

    lr: float or function             learning rate, constant or a schedule function [0,1] -> R+ where 1 is beginning of the
                                      training and 0 is the end of the training.

    vf_coef: float                    value function loss coefficient in the optimization objective

    max_grad_norm: float or None      gradient norm clipping coefficient

    gamma: float                      discounting factor

    lam: float                        advantage estimation discounting factor (lambda in the paper)

    log_interval: int                 number of timesteps between logging events

    nminibatches: int                 number of training minibatches per update. For recurrent policies,
                                      should be smaller or equal than number of environments run in parallel.

    noptepochs: int                   number of training epochs per update

    cliprange: float or function      clipping range, constant or schedule function [0,1] -> R+ where 1 is beginning of the training
                                      and 0 is the end of the training

    save_interval: int                number of timesteps between saving events

    load_path: str                    path to load the model from

    **network_kwargs:                 keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network
                                      For instance, 'mlp' network architecture has arguments num_hidden and num_layers.



    '''
    set_global_seeds(seed)

    if isinstance(lr, float): lr = constfn(lr)
    else: assert callable(lr)
    if isinstance(cliprange, float): cliprange = constfn(cliprange)
    else: assert callable(cliprange)
    total_timesteps = int(total_timesteps)

    policy = build_policy(env, network, **network_kwargs)

    print("Lets start learning")

    # Get the nb of env
    nenvs = env.num_envs

    # Get state_space and action_space
    ob_space = env.observation_space
    ac_space = env.action_space

    # Calculate the batch_size
    nbatch = nenvs * nsteps
    nbatch_train = nbatch // nminibatches

    # Instantiate the model object (that creates act_model and train_model)
    if model_fn is None:
        from baselines.ppo2.model import Model
        model_fn = Model

    model = model_fn(policy=policy,
                     ob_space=ob_space,
                     ac_space=ac_space,
                     nbatch_act=nenvs,
                     nbatch_train=nbatch_train,
                     nsteps=nsteps,
                     ent_coef=ent_coef,
                     vf_coef=vf_coef,
                     max_grad_norm=max_grad_norm,
                     load_path=model_load_path,
                     skip_layers=skip_layers,
                     frozen_weights=frozen_weights,
                     transfer_weights=transfer_weights)

    if load_path is not None:
        model.load(load_path)
    # Instantiate the runner object
    runner = Runner(env=env, model=model, nsteps=nsteps, gamma=gamma, lam=lam)
    if eval_env is not None:
        eval_runner = Runner(env=eval_env,
                             model=model,
                             nsteps=nsteps,
                             gamma=gamma,
                             lam=lam)

    epinfobuf = deque(maxlen=100)
    if eval_env is not None:
        eval_epinfobuf = deque(maxlen=100)

    # Start total timer
    tfirststart = time.time()

    nupdates = total_timesteps // nbatch
    for update in range(1, nupdates + 1):
        if second_env is not None and (update % 2 == 0):
            runner = Runner(env=second_env,
                            model=model,
                            nsteps=nsteps,
                            gamma=gamma,
                            lam=lam)
        else:
            runner = Runner(env=env,
                            model=model,
                            nsteps=nsteps,
                            gamma=gamma,
                            lam=lam)

        assert nbatch % nminibatches == 0
        # Start timer
        tstart = time.time()
        frac = 1.0 - (update - 1.0) / nupdates
        # Calculate the learning rate
        lrnow = lr(frac)
        # Calculate the cliprange
        cliprangenow = cliprange(frac)
        # Get minibatch
        obs, returns, masks, actions, values, neglogpacs, states, epinfos = runner.run(
        )  #pylint: disable=E0632
        if eval_env is not None:
            eval_obs, eval_returns, eval_masks, eval_actions, eval_values, eval_neglogpacs, eval_states, eval_epinfos = eval_runner.run(
            )  #pylint: disable=E0632

        epinfobuf.extend(epinfos)
        if eval_env is not None:
            eval_epinfobuf.extend(eval_epinfos)

        # Here what we're going to do is for each minibatch calculate the loss and append it.
        mblossvals = []
        if states is None:  # nonrecurrent version
            # Index of each element of batch_size
            # Create the indices array
            inds = np.arange(nbatch)
            for _ in range(noptepochs):
                # Randomize the indexes
                np.random.shuffle(inds)
                # 0 to batch_size with batch_train_size step
                for start in range(0, nbatch, nbatch_train):
                    end = start + nbatch_train
                    mbinds = inds[start:end]
                    slices = (arr[mbinds]
                              for arr in (obs, returns, masks, actions, values,
                                          neglogpacs))
                    mblossvals.append(model.train(lrnow, cliprangenow,
                                                  *slices))
        else:  # recurrent version
            assert nenvs % nminibatches == 0
            envsperbatch = nenvs // nminibatches
            envinds = np.arange(nenvs)
            flatinds = np.arange(nenvs * nsteps).reshape(nenvs, nsteps)
            envsperbatch = nbatch_train // nsteps
            for _ in range(noptepochs):
                np.random.shuffle(envinds)
                for start in range(0, nenvs, envsperbatch):
                    end = start + envsperbatch
                    mbenvinds = envinds[start:end]
                    mbflatinds = flatinds[mbenvinds].ravel()
                    slices = (arr[mbflatinds]
                              for arr in (obs, returns, masks, actions, values,
                                          neglogpacs))
                    mbstates = states[mbenvinds]
                    mblossvals.append(
                        model.train(lrnow, cliprangenow, *slices, mbstates))

        # Feedforward --> get losses --> update
        lossvals = np.mean(mblossvals, axis=0)
        print(lossvals)
        # End timer
        tnow = time.time()
        # Calculate the fps (frame per second)
        fps = int(nbatch / (tnow - tstart))
        if update % log_interval == 0 or update == 1:
            # Calculates if value function is a good predicator of the returns (ev > 1)
            # or if it's just worse than predicting nothing (ev =< 0)
            ev = explained_variance(values, returns)
            logger.logkv("serial_timesteps", update * nsteps)
            logger.logkv("nupdates", update)
            logger.logkv("total_timesteps", update * nbatch)
            logger.logkv("fps", fps)
            logger.logkv("explained_variance", float(ev))
            logger.logkv('eprewmean',
                         safemean([epinfo['r'] for epinfo in epinfobuf]))
            logger.logkv('eplenmean',
                         safemean([epinfo['l'] for epinfo in epinfobuf]))
            if eval_env is not None:
                logger.logkv(
                    'eval_eprewmean',
                    safemean([epinfo['r'] for epinfo in eval_epinfobuf]))
                logger.logkv(
                    'eval_eplenmean',
                    safemean([epinfo['l'] for epinfo in eval_epinfobuf]))
            logger.logkv('time_elapsed', tnow - tfirststart)
            for (lossval, lossname) in zip(lossvals, model.loss_names):
                logger.logkv(lossname, lossval)
            kvs = logger.getkvs()
            logger.JSONOutputFormat(save_path +
                                    '/epoch_results.json').writekvs(kvs)
            if MPI is None or MPI.COMM_WORLD.Get_rank() == 0:
                logger.dumpkvs()

        if save_interval and (update % save_interval == 0
                              or update == 1) and logger.get_dir() and (
                                  MPI is None
                                  or MPI.COMM_WORLD.Get_rank() == 0):
            checkdir = osp.join(logger.get_dir(), 'checkpoints')
            os.makedirs(checkdir, exist_ok=True)
            savepath = osp.join(save_path + '/checkpoints', '%.5i' % update)
            print('Saving to', savepath)
            model.save(savepath)
    return model
Exemplo n.º 5
0
def train(rollout_worker, evaluator, n_epochs, n_test_rollouts, n_episodes,
          n_train_batches, policy_save_interval, save_policies, **kwargs):
    global num_cpu
    rank = MPI.COMM_WORLD.Get_rank()
    latest_policy_path = os.path.join(logger.get_dir(), 'policy_latest.pkl')
    best_policy_path = os.path.join(logger.get_dir(), 'policy_best.pkl')
    periodic_policy_path = os.path.join(logger.get_dir(), 'policy_{}.pkl')

    best_success_rate = -np.inf
    best_early_stop_val = -np.inf
    success_rates = []
    # if the std dev of the success rate of the last epochs is larger than X do early stopping.
    n_epochs_avg_for_early_stop = 4
    early_stop_vals = deque(maxlen=n_epochs_avg_for_early_stop)

    done_training = False
    for epoch in range(n_epochs):
        # train
        logger.info("Training epoch {}".format(epoch))
        rollout_worker.clear_history()
        policy, time_durations = rollout_worker.generate_rollouts_update(
            n_episodes, n_train_batches)
        logger.info(
            'Time for epoch {}: {:.2f}. Rollout time: {:.2f}, Training time: {:.2f}'
            .format(epoch, time_durations[0], time_durations[1],
                    time_durations[2]))

        # eval
        logger.info("Evaluating epoch {}".format(epoch))
        evaluator.clear_history()

        for _ in range(n_test_rollouts):
            evaluator.generate_rollouts()

        # record logs
        logger.record_tabular('epoch', epoch)
        for key, val in evaluator.logs('test'):
            logger.record_tabular(key, mpi_average(val))
        for key, val in rollout_worker.logs('train'):
            logger.record_tabular(key, mpi_average(val))
        for key, val in policy.logs('policy'):
            logger.record_tabular(key, mpi_average(val))

        success_rate = mpi_average(evaluator.current_success_rate())
        success_rates.append(success_rate)

        early_stop_current_val = logger.getkvs()[
            kwargs['early_stop_data_column']]
        # print("Rank {} esv: {}".format(rank, early_stop_current_val))
        early_stop_vals.append(early_stop_current_val)

        if rank == 0:
            try:
                rollout_worker.policy.draw_hists(img_dir=logger.get_dir())
            except Exception as e:
                pass

            logger.info("Data_dir: {}".format(logger.get_dir()))
            logger.dump_tabular()

            # save latest policy
            evaluator.save_policy(latest_policy_path)

            if policy_save_interval > 0 and epoch % policy_save_interval == 0 and save_policies:
                policy_path = periodic_policy_path.format(epoch)
                logger.info(
                    'Saving periodic policy to {} ...'.format(policy_path))
                evaluator.save_policy(policy_path)

            # save the policy if it's better than the previous ones
            if kwargs['early_stop_data_column'] is None:
                if success_rate >= best_success_rate and save_policies:
                    best_success_rate = success_rate
                    logger.info(
                        'New best success rate: {}. Saving policy to {} ...'.
                        format(best_success_rate, best_policy_path))
                    evaluator.save_policy(best_policy_path)
            else:
                assert early_stop_current_val is not None, "Early stopping value should not be none."
                if early_stop_current_val >= best_early_stop_val and save_policies:
                    best_early_stop_val = early_stop_current_val
                    logger.info(
                        'New best value for {}: {}. Saving policy to {} ...'.
                        format(kwargs['early_stop_data_column'],
                               early_stop_current_val, best_policy_path))
                    evaluator.save_policy(best_policy_path)

        if len(early_stop_vals) >= n_epochs_avg_for_early_stop:
            avg = np.mean(early_stop_vals)
            logger.info('Mean of {} of last {} epochs: {}'.format(
                kwargs['early_stop_data_column'], n_epochs_avg_for_early_stop,
                avg))

            if avg >= kwargs['early_stop_threshold'] and avg >= kwargs[
                    'early_stop_threshold'] != 0:
                logger.info('Policy is good enough now, early stopping')
                done_training = True
                # break

        # make sure that different threads have different seeds
        local_uniform = np.random.uniform(size=(1, ))
        root_uniform = local_uniform.copy()
        MPI.COMM_WORLD.Bcast(root_uniform, root=0)
        if rank != 0:
            assert local_uniform[0] != root_uniform[0]
        if (epoch + 1) == n_epochs:
            logger.info('All epochs are finished. Stopping the training now.')
            done_training = True
        if done_training:
            break
Exemplo n.º 6
0
def learn(*,
          policy,
          env,
          nsteps,
          total_timesteps,
          ent_coef,
          lr,
          vf_coef=0.5,
          max_grad_norm=0.5,
          gamma=0.99,
          lam=0.95,
          log_interval=10,
          nminibatches=4,
          noptepochs=4,
          cliprange=0.2,
          save_interval=0):

    if isinstance(lr, float):
        lr = constfn(lr)
    else:
        assert callable(lr)

    if isinstance(cliprange, float):
        cliprange = constfn(cliprange)
    else:
        assert callable(cliprange)

    total_timesteps = int(total_timesteps)

    # Log
    csv_writer = logger.CSVOutputFormat('{0}.csv'.format(Config.EXPR_NAME))
    tensorboard_writer = logger.TensorBoardOutputFormat('./tensorboard/ppo/')

    nenvs = env.num_envs
    ob_shape = utils.get_shape(env.observation_space)
    ac_space = env.action_space
    nbatch = nenvs * nsteps
    nbatch_train = nbatch // nminibatches

    make_model = lambda scope_name: Model(policy=policy,
                                          ob_shape=ob_shape,
                                          ac_space=ac_space,
                                          nbatch_act=nenvs,
                                          nbatch_train=nbatch_train,
                                          nsteps=nsteps,
                                          ent_coef=ent_coef,
                                          vf_coef=vf_coef,
                                          max_grad_norm=max_grad_norm,
                                          scope_name=scope_name)

    if save_interval and logger.get_dir():
        import cloudpickle
        with open(os.path.join(logger.get_dir(), 'make_model.pkl'),
                  'wb') as fh:
            fh.write(cloudpickle.dumps(make_model))

    model = make_model(Config.PRIMARY_MODEL_SCOPE)
    opponent_models = []

    baseline_file = None

    for i in range(Config.NUM_SNAKES - 1):
        opponent_model = make_model(Config.OPPONENT_MODEL_SCOPE[i])
        opponent_models.append(opponent_model)

    if baseline_file is not None:
        model.load(baseline_file)
        print("opponent model ")
        for opponent in opponent_models:
            if opponent is not None:
                opponent.load(baseline_file)

    runner = Runner(env=env,
                    model=model,
                    opponent_models=opponent_models,
                    nsteps=nsteps,
                    gamma=gamma,
                    lam=lam)

    maxlen = 100
    epinfobuf = deque(maxlen=maxlen)
    first_start_time = time.time()

    next_highscore = 5
    highscore_interval = 1

    opponent_save_interval = Config.OPPONENT_SAVE_INTERVAL
    max_saved_opponents = Config.MAX_SAVED_OPPONENTS

    model_idx = 0

    opponents_idx = [0 for _ in range(Config.NUM_SNAKES - 1)]
    num_opponents = [0 for _ in range(Config.NUM_SNAKES - 1)]

    for i in range(Config.NUM_SNAKES - 1):
        model.save(utils.get_opponent_file(i, opponents_idx[i]))
        opponents_idx[i] += 1
        num_opponents[i] += 1

    nupdates = total_timesteps // nbatch

    selected_opponents_idx = [0 for _ in range(len(opponent_models))]

    for update in range(1, nupdates + 1):
        for i, opponent_model in enumerate(opponent_models):
            if opponent_model is not None:
                selected_opponents_idx[i] = random.randint(
                    0, max(num_opponents[i] - 1, 0))
                print('Loading checkpoint ' + str(selected_opponents_idx[i]) +
                      '...')
                opponent_model.load(
                    utils.get_opponent_file(i, selected_opponents_idx[i]))

        assert nbatch % nminibatches == 0
        print("here")
        nbatch_train = nbatch // nminibatches
        start_time = time.time()
        frac = 1.0 - (update - 1.0) / nupdates
        lrnow = lr(frac)
        cliprangenow = cliprange(frac)
        obs, returns, masks, actions, values, neglogpacs, states, epinfos = runner.run(
        )
        epinfobuf.extend(epinfos)
        mblossvals = []
        inds = np.arange(nbatch)
        for _ in range(noptepochs):
            np.random.shuffle(inds)
            for start in range(0, nbatch, nbatch_train):
                end = start + nbatch_train
                mbinds = inds[start:end]
                slices = (arr[mbinds] for arr in (obs, returns, masks, actions,
                                                  values, neglogpacs))
                mblossvals.append(model.train(lrnow, cliprangenow, *slices))

        lossvals = np.mean(mblossvals, axis=0)
        current_time = time.time()
        fps = int(nbatch / (current_time - start_time))

        ep_rew_mean = safemean([epinfo['r'] for epinfo in epinfobuf])

        print("opponent models is ", opponent_models)
        for i, opponent_model in enumerate(opponent_models):
            if update % opponent_save_interval == 0 and opponent_model is not None:
                print('Saving opponent model{0} {1} ...'.format(
                    i, opponents_idx[i]))

                model.save(utils.get_opponent_file(i, opponents_idx[i]))

                opponents_idx[i] += 1
                num_opponents[i] = max(opponents_idx[i], num_opponents[i])
                opponents_idx[i] = opponents_idx[i] % max_saved_opponents

        if update % log_interval == 0 or update == 1:

            logger.logkv('num_opponents', num_opponents[0])
            ev = explained_variance(values, returns)
            logger.logkv("serial_timesteps", update * nsteps)
            logger.logkv("nupdates", update)
            logger.logkv("total_timesteps", update * nbatch)
            # logger.logkv("fps", fps)
            logger.logkv("explained_variance", float(ev))
            logger.logkv('eprewmean ' + str(maxlen), ep_rew_mean)
            logger.logkv('eplenmean',
                         safemean([epinfo['l'] for epinfo in epinfobuf]))
            logger.logkv('time_elapsed', current_time - first_start_time)
            # logger.logkv('nenvs nsteps nmb nopte', [nenvs, nsteps, nminibatches, noptepochs])
            logger.logkv('ep_rew_mean', ep_rew_mean)
            for (lossval, lossname) in zip(lossvals, model.loss_names):
                logger.logkv(lossname, lossval)

            kvs = logger.getkvs()
            csv_writer.writekvs(kvs)
            tensorboard_writer.writekvs(kvs)
            logger.dumpkvs()

        if save_interval and (update % save_interval == 0
                              or update == 1) and logger.get_dir():
            model.save('snake_model_num{0}_{1}.pkl'.format(
                Config.NUM_SNAKES, model_idx))
            model_idx += 1

        if (ep_rew_mean > next_highscore) and Config.NUM_SNAKES == 1:
            print('saving agent with new highscore ', next_highscore, '...')
            next_highscore += highscore_interval
            model.save('highscore_model.pkl')

    model.save('snake_model_num{0}_{1}_final.pkl'.format(
        Config.NUM_SNAKES, model_idx))

    env.close()